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Abstract: Smart Agriculture has gained significant attention in recent years due to its benefits for
both humans and the environment. However, the high costs associated with commercial devices
have prevented some agricultural lands from reaping the advantages of technological advancements.
Traditional methods, such as reflectance spectroscopy, offer reliable and repeatable solutions for
soil property sensing, but the high costs and redundancy of preprocessing steps limit their on-site
applications in real-world scenarios. Recently, RF-based soil sensing systems have opened a new
dimension in soil property analysis using IoT-based systems. These systems are not only portable,
but also significantly cheaper than traditional methods. In this paper, we carry out a comprehensive
review of state-of-the-art soil property sensing, divided into four areas. First, we delve into the
fundamental knowledge and studies of reflectance-spectroscopy-based soil sensing, also known as
traditional methods. Secondly, we introduce some RF-based IoT soil sensing systems employing
a variety of signal types. In the third segment, we introduce the details of sample pretreatment,
inference methods, and evaluation metrics. Finally, after analyzing the strengths and weaknesses of
the current work, we discuss potential future aspects of soil property sensing.

Keywords: soil sensing; chemical analysis; spectroscopy; Internet of Things (IoT)

1. Introduction

Smart agriculture has increasingly become a focal point of interest. Implementing a
smart agriculture system can assist farmers in achieving precision irrigation [1–3], leading
to more efficient water usage. Additionally, the integration of such systems can aid farmers
in monitoring their soil’s fertility levels. This not only boosts their crop yield [4], but also
helps in averting over-fertilization, which can contaminate the soil and groundwater [5,6].

Soil sample measurements using reflectance spectroscopy are regarded as reliable
due to their high repeatability and reproducibility [7]. These methods are also viewed
as swift and cost-effective tools for soil characterization [8,9]. Traditional reflectance
spectroscopy is typically conducted in laboratory settings using spectrometers [10], accom-
panied by several preprocessing steps. These preprocessing activities aim to minimize
the effects of soil moisture and particle size, thereby reducing covariables in soil property
predictions [11]. However, the preprocessing requirements further confine the experi-
ment environment to the laboratory. A gap remains between laboratory experiments and
real-world, on-site detection.

Recently, RF-based soil sensing has been introduced as a portable and cost-effective al-
ternative for on-site soil analysis [12–16]. When contrasted with traditional reflectance spec-
troscopy experiments, RF-based techniques present several advantages. First, the equip-
ment used, such as RFID tags of WiFi device is more widely available and affordable [12–14].
Second, RF-based soil sensing eliminates the need for preprocessing steps, bridging the gap
between laboratory and real-world applications. Moreover, thanks to the property of RF
signals, these methods can encompass a broader area compared to traditional techniques.

Given the burgeoning interest in soil property sensing, numerous studies have been
undertaken to encapsulate the advancements in this domain [7,17–22]. Nevertheless,
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the recent advent of RF-based soil property sensing has brought to the fore IoT-based
systems showcasing the potential for affordable and mobile soil sensing solutions. These
emerging contributions have not been comprehensively reviewed and encapsulated. Table 1
delineates the distinctions between the topics covered in literature reviews of soil sensing
methodologies over the past two decades and the content of our research.

Table 1. Soil property sensing survey comparison ◦: analyzed; ? deep analyzed.

Work Year Sample
Preparation

Category of
Properties Signal Types Calibration

Method
Device &

Environment Applications

[17] 2006 ◦ ? ◦ ◦ ◦

[18] 2009 ◦ ? ◦ ◦ ◦

[19] 2010 ? ? ◦ ◦ ◦ ◦

[20] 2014 ? ? ◦ ◦ ◦

[21] 2018 ? ◦ ? ?

[22] 2018 ◦ ◦ ◦ ◦

[7] 2022 ◦ ? ◦ ? ◦ ?

This Paper 2023 ? ◦ ? ? ? ?

In this study, we undertake a comprehensive review of soil property sensing method-
ologies, encompassing both traditional reflectance spectroscopy-based systems and RF-
based IoT soil sensing systems. In addition to this, we delve into an in-depth discourse
on soil sample preparation procedures and spectral information analysis methods. We
also compare the merits and limitations of traditional and IoT methods, and contemplate
potential directions for future soil property sensing research.

The organization of this paper is as follows: In the Section 1, we introduce the back-
ground of soil sensing. In Section 2, we present fundamental concepts related to soil
reflectance spectroscopy and analyze traditional soil sensing methods based on reflectance
spectroscopy, with a particular focus on key elements such as soil carbon, soil moisture,
and soil macronutrients. The Section 3 outlines state-of-the-art RF-based IoT soil sensing
systems. In Section 4, we detail various inference methods and evaluation metrics. In
Section 5, we explore future prospects of soil property sensing, considering the strengths
and weaknesses of existing approaches. Finally, we provide Section 6 to encapsulate the
key points of this paper.

2. Tradicitonal Soil Sensing System

In this section, we delve into the conventional approach of soil sensing through
reflectance spectroscopy. Diffuse reflectance spectroscopy [17,23] emerges as a swift, eco-
nomical, and environmentally friendly method, showcasing consistent prediction outcomes
when compared to previous chemical analysis. In recent times, the endeavors to harness
vis-NIR-MIR reflectance spectroscopy for predicting soil attributes [17,19,20,24] are surging.
Attributes such as total carbon (TC), total organic carbon (TOC), soil moisture, and essential
chemical constituents like total soil nitrogen (N), extractable phosphorus (P), and potassium
(K), among other foundational soil components, have garnered significant attention as
researchers aim to pinpoint their absorption properties within the vis-NIR-MIR range.

2.1. Fundamentals of Soil Reflectance Spectroscopy

The utilization of reflectance spectroscopy for discerning soil characteristics has gained
considerable attention, primarily due to its non-invasive nature [9,17,25]. Traditional
reflectance spectroscopy is founded on the principles of the Beer–Lambert law. The Beer–
Lambert law [26] explains the diminution of light intensity as it passes through a material,
with this reduction being directly related to the substance’s properties. As light permeates
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a material, it incites the molecule bonds of each component within the substance to vibrate.
Given the unique molecular structures and bonds that each chemical species possesses,
each one generates a distinct absorption spectrum. Thus, the Beer–Lambert law is widely
employed to determine the concentration of chemical components that can absorb and
scatter light in chemical analyses [8,25,27].

One common variant of the Beer–Lambert law establishes a relationship between
the decrease in light intensity within a material, which comprises a uniformly distributed
absorbing substance, the length of the optical path of light through the substance, and the
substance’s absorbance capacity [28,29]. The mathematical depiction of the Beer–Lambert
law [30] is presented in Equation (1).

A = log(
I0

Ir
) = ε`c (1)

Here, I represents the light intensity that is initially emitted, while Ir signifies the
light intensity received after it has traversed an optical path of length `. A stands for
the absorbance of the substance, which can be calculated from the initial emitted light
intensity I and the detected light intensity Ir after the light has journeyed the optical
path of length `. The molar attenuation coefficient is represented by ε, and c denotes
the concentration of the species that attenuates the light. Consequently, the frequencies
where light absorption occurs result in a diminished reflected radiation signal. This can be
represented in reflectance R and can subsequently be converted to apparent absorbance, as
illustrated in Equation (2) [19,31].

A = log(
1
R
) (2)

2.2. Soil Sample Pretreatment

This section details the preparation and preliminary processing of soil samples prior to
spectral analysis. Regarding soil sample preparation, there are two common methodologies.
Some studies involve collecting samples directly from the field [32–35], while others prefer
to amalgamate raw soil with a solution that contains target elements to achieve the desired
concentration levels [36]. During the pre-processing phase, multiple steps are undertaken—
whether the sample is natural or mixed—to ensure the soil’s homogeneity and to mitigate
interference from other sources like moisture or particle size variations.

2.2.1. Preparation of Soil Samples

The first step in soil attribute sensing is collecting soil samples. The approach to
collecting soil samples can vary. Broadly, soil samples can be categorized into two groups:
those collected directly from the field and those where natural soils are combined with a
target element solution. In the study by [33], soil samples (0–20 cm depth) were sourced
from 10 distinct rice-paddy and cropland locations in the Aceh Besar district of Aceh
Province. From each location, two samples were extracted from rice-paddy fields and
two from the neighboring croplands. The research in [34] utilized soil gathered from the
Horticulture Research Centre in Kamrup, Assam. They employed a grid sampling method,
collecting soil from 20 cm below the surface. The samples in the study by [32] came from
uncultivated and unfertilized farms. Typically, such natural soil samples are also procured
from about 20 cm beneath the surface.

In contrast to using only naturally collected soil, some studies aim for compatibility
with higher concentration levels of the target attributes. For instance, in [36] mixed natural
soils, sourced from Hui Zhuang Agricultural Development Company in Huainan City,
Anhui Province, China, with Nitrogen solutions at concentrations ranging from 0% to 30%
(increasing in 2% increments) for their experiments. The method of soil sample preparation
is usually determined by the desired concentration levels for the target elements.
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2.2.2. Pre-Processing Steps for Soil Samples

In conventional in-lab soil attribute sensing experiments, pre-processing of soil sam-
ples is a standard procedure, as evidenced by various studies [19,32–34,36]. Considering
that spectra obtained from horizontal cross-sections of 5 cm soil slices yield slightly less
precise predictions [19], such pre-processing is vital. This is because these preparatory steps
ensure consistent quality across all soil samples, facilitating the development of a more
generalized model based on these standardized samples.

Figure 1 depicts the procedural flow for soil sample pre-processing. The initial stage
of soil pre-processing involves drying. For instance, in the study by [33], soil samples were
stored for a day to equilibrate, followed by air-drying for a week. Similarly, in [34], soil
samples collected from 20 cm below the soil surface were air-dried for approximately a
week. In the research by [36], soil samples were dried at 80 ◦C for 8 h after being thoroughly
mixed with varying concentration solutions. In [37], the soil samples are thinly spread, with
a thickness of about 2 cm, and left to dry in a well-ventilated indoor area with ample light.
After drying, the samples are transferred into beakers and further dehydrated using an
electric blast dryer. The objective of dehydration is to eliminate the impact of soil moisture
during the spectroscopy analysis process.

Vertical ContainerPreprocessing Steps

Drying  

Sieving

Grinding and
screening

Raw Soil
Samples

Spectroscopy
Analysis

Figure 1. Pre-processing steps for the raw soil samples.

Next, sieving is the subsequent step in soil preprocessing. In the study by [33], dried
soil samples are passed through a 2 mm nylon sieve to exclude stones, insects, large debris,
pebbles, and other extraneous materials. Similarly, Ref. [34] filter the dried samples using
a 2 mm sieve. In the research conducted by [32], hand cleaning is employed to eliminate
stones and excessive residues. The primary purpose of this step is to discard materials with
larger particle sizes, as they can introduce significant noise to the spectroscopy analysis.

The final preparatory step before spectroscopy analysis involves grinding and screen-
ing. In the study by [33], soil samples were ground using a mechanical agate grinder
and then sieved through a 100 mesh screen (with a diameter of 0.150 mm). Similarly, in
the research presented by [34], all soil samples underwent grinding. The study by [32]
opted to grind their samples and subsequently sieve them through a 1 mm screen. Soil
samples in [36] were first ground, then sieved using an 80 mesh (160 µm) screen, and later
compressed into 10 mm× 10 mm samples with a thickness of 2 mm under 10 MPa pressure
using a bench press machine. In the study by [35], the approach involved grinding the soil
samples into a powdered form and subsequently passing them through a 100-mesh sieve.
The main objective of this procedure is to minimize the impact of diffuse reflectance from
soil samples that are not uniformly distributed. After these steps are carried out diligently,
the soil samples are prepared for in-lab spectroscopy analysis to identify the concentration
levels of specific soil attributes.
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2.3. Spectral Range Selection for Reflectance Spectroscopy

For reflectance spectroscopy, multiple spectral ranges are accessible, as depicted in
Figure 2. Research from [17,19] outlines the most consistently effective spectral ranges
utilized in Reflectance Spectroscopy: Visible, Near-Infrared (NIR), and Mid-Infrared (MIR).
Combinations of these spectra, such as Vis-NIR(VNIR) or NIR-MIR, offer potential solu-
tions for detecting various soil properties. Spectra deemed to be either unresponsive or
influenced by spectrometer artifacts were excluded before conducting the statistical analy-
sis. The wavelength ranges for Visible, NIR, and MIR are detailed in Table 2. According
to the research of [17,19,38], five spectral ranges are typically considered and employed in
spectral analysis.

UV VIS NIR MIR FIR

200nm
380nm 2500nm

25,000nm800nm
500,000nm

Figure 2. Wavelength of different spectral ranges.

Table 2. Selected spectral range in reflectance spectroscopy.

Spectral Range Wavelength (nm) Wave Number (cm−1)

Visible 380–800 26,315–12,500

NIR 800–2500 12,500–4000

MIR 2500–25,000 4000–400

VIS-NIR 380–2400 26,315–4167

VIS-NIR-MIR 380–14,286 26,315–700

2.4. Total Carbon and Total Organic Carbon

An accurate evaluation of carbon content is crucial for understanding soil fertility and
nutrient management. Two primary categories are studied in this domain: Total Carbon and
Total Organic Carbon. TC encompasses all carbon found in every particle and compound,
which includes both TOC and Total Inorganic Carbon (TIC). TC represents the entirety
of carbon found in any compound or particle. Total Inorganic Carbon and Total Organic
Carbon represent carbon originating from all organic sources that are covalently bound [39].
In the context of soils and sediments, the organic fraction comprises residues from animals,
plants, or microorganisms at various decomposition stages, as well as elemental C like coal,
charcoal, and graphite [40]. In scenarios where no inorganic carbon forms are present in
soils and sediments, the quantity of TC matches the TOC value [41].

Total Carbon = Total Organic Carbon + Total Inorganic Carbon (3)

The study by [42] explored the potential of diffuse reflectance spectroscopy in pre-
dicting TC in Hawaiian agricultural soils. This was accomplished by integrating visible,
NIR, and MIR spectral libraries and constructing chemometric models using partial least
squares regression (PLSR) and random forest (RF) ensemble tree regression. The models
achieved R2 values of 0.95 (VNIR) and 0.94 (MIR) with RMSE values of 2.80% and 3.08%,
respectively.

In a different study, Ref. [43] utilized MIR to assess organic carbon in soils using
portable instruments that spanned visible-to-near-infrared and mid-infrared ranges. Their
experiments, both on-site and in the laboratory, confirmed the flexibility and potential of
handheld MIR instruments over stationary counterparts. The MIR models, developed from
finely ground samples, achieved an impressive R2 of 0.86 and an RMSE of 0.11% during
cross-validation.
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Meanwhile, Ref. [44] aimed to predict soil organic carbon using a local PLSR approach.
They amassed nearly 20,000 samples from across the European Union, scanned using a
VNIR spectrometer. Their results highlighted a promising predictive capability for mineral
soils, with RMSE values of 3.6 g/kg for cropland and 7.2 g/kg for grassland.

An innovative calibration method, known as regression rules, was introduced by [45].
This approach offers benefits such as high accuracy, simplicity in interpretation, variable
selection, parsimony, and adherence to the upper and lower prediction boundaries.

Lastly, Ref. [46] set out to calibrate and validate models for TC and TOC using
approximately 20,000 samples from the Rapid Carbon Assessment Project (RaCA). This
nationwide initiative gathered over 144,000 soil samples from across the U.S for carbon
stock mapping using VisNIR. Models were developed using either PLSR or Artificial Neural
Network (ANN). The results demonstrated that the ANN-calibrated models for OC and
TC, with R2 values exceeding 0.94, had a significant edge over the PLSR models, which
had an R2 value of 0.83. This suggests potential benefits in combining neural networks
with reflectance spectroscopy.

2.5. Soil Moisture

Soil moisture is pivotal for facilitating the uptake of vital nutrients by plants. Accurate
monitoring of soil moisture is key for promoting sustainable agriculture [3,47,48]. In
the realm of soil moisture detection via reflectance spectroscopy, the fluctuation in light
reflectance is particularly evident in the VNIR region [22,49], especially within the water
absorption bands at 1450 and 1940 nm [22,50–52]. The findings in [50] illustrate that
changes in relative reflectance based on soil moisture are contingent on moisture levels.
Under typical agricultural scenarios with lower soil moisture, as moisture content rises,
reflectance decreases.

However, the significance of detecting soil moisture extends beyond its own measure.
It also critically impacts the detection of other soil attributes. This is because reflectance
spectroscopy hinges on how incident light interacts with a material’s surface, and moisture
presence can alter the absorption of other properties [53]. The research presented in [53]
centers on assessing the potential of NIRS for analyzing moist field soils, gauging the
influence of soil moisture on the accuracy of NIRS predictions of soil attributes, and
evaluating the reliability of a NIRS multivariate calibration method. Tests on both air-dried
and moist soils show that NIR-PLSR holds strong predictive accuracy for several soil
attributes, including total C, organic C, inorganic C, total N, and clay.

The study [54] seeks to mitigate the moisture effect on spectra during the prediction
of Soil Organic Carbon (SOC) content. It adopts the external parameter orthogonalization
(EPO) technique to counteract the moisture influence on spectral calibration. Meanwhile,
the research in [55] delves into SOC prediction, utilizing the normalized soil moisture index
(NSMI) to determine the moisture content of samples, achieving an R2 value of 0.74, and
categorizing samples based on their spectral moisture content.

Furthermore, [56] evaluate the combined impact of salt and moisture on soil reflectance
spectra. Their findings indicate that the concurrent variability of salt and moisture content
complicates the modeling based on soil reflectance quantification, preventing accurate
assessments of either property.

2.6. Soil Macronutrients (N, P and K)

Essential soil macronutrients, namely nitrogen, phosphorus, and potassium, are vital
for plant and crop vitality [57]. Not only does accurate macronutrient detection enhance
plant growth and crop yield [58], but it also mitigates risks associated with over-fertilization
and groundwater contamination [59].

In [33], the researchers target the measurement of six soil properties: N, P, K, soil
pH, magnesium (Mg), and calcium (Ca). Utilizing a spectrometer in the NIR region
(1000–2500 nm), they gather spectral data and post certain preprocessing steps. This study
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also juxtaposed PCR (Principal Component Regression) and PLSR calibration methods,
incorporating a PCA-based outlier detection strategy to enhance prediction model stability.

The study by [35] centers on predicting N, P, and K. When juxtaposed with [33], and
[35] evaluates performance variations across diverse spectral regions, encompassing NIR,
MIR, and a combination of both. Interestingly, the preprocessing in [35] omits the water
removal step, which was present in [33]. This suggests that their calibration model might
exhibit increased resilience to fluctuations in soil moisture levels. By employing Least
Squares Support Vector Regressions (LS-SVM), they achieved superior results compared to
the conventional PLSR method within the NIR or MIR spectrum. This study underscores the
efficacy of LS-SVM in precisely gauging soil attributes via infrared reflectance spectroscopy.

On another front, Ref. [34] present a novel perspective on soil sensing aimed at
macronutrients. Instead of traditional spectrometers, they employ LEDs and sensors em-
bedded on a circuit board. However, there are certain limitations to their approach. For
one, even when taking into account the LEDs’ lower resolution compared to traditional
spectrometers, the target element concentration level span (0 to 50%) seems considerably
elevated relative to prior research. Additionally, instead of leveraging conventional cali-
bration models such as PLSR, LS-SVR, or neural networks, Ref. [34] utilize a unique curve
for their predictive model. This approach might constrain the model’s generalizability.
Notwithstanding these concerns, their research ushers in an innovative perspective on
reflectance spectroscopy by harnessing LEDs and sensors, marking significant progress
towards real-world, on-location deployments versus controlled lab-based experiments with
spectrometers.

The study by [60] showed that, without the presence of coarse crumb, PLSR could
accurately determine soil attributes such as Total Nitrogen (TN), Total Phosphorus (TP),
and Total Potassium (TK) in a laboratory setting using vis-NIR reflectance spectra. This
research provided a rapid technique for soil classification aligned with the Chinese Soil
Taxonomy (CST) by tapping into properties linked to CST.

Regarding individual macronutrient detection, Ref. [61] formulated a hyperspectral
model, emphasizing Soil Nitrogen (SN) estimation, grounded on the PLSR calibration
method. Samples were sourced from diverse agricultural lands in Maharashtra, India,
enhancing the model’s versatility. The research identified several spectral bands sensitive
to soil nitrogen content, including 480 nm, 511 nm, 653 nm, 997 nm, 1472 nm, 1795 nm,
2210 nm, and 2296 nm.

Certain studies deeply analyze nitrogen detection, intertwining this process with
other crucial elements like TC [62]. Specifically, Ref. [62] crafted a methodology for swift
on-site evaluations of C and N using a portable spectroradiometer, the ASD FieldSpecPro.
The study highlighted that the accuracy of PLSR-based calibration improves when the
training datasets align spectrally with the target datasets. In related work, Ref. [63]
indicated that training and testing phosphorus detection on soil samples from diverse fields
amplifies the complexity, making practical applications more challenging. The research
by [64] underscored that the prediction of total phosphorus is linked to SC detection
in the NIR spectrum. Moreover, Ref. [65] embarked on detecting soil phosphorus and
potassium using a vast dataset comprising over 1500 soil samples. Opting for the 1100 to
2500 nm range within the VNIR spectral region, they aimed for reliable prediction outcomes.
However, they observed that the optical estimation for accessible soil P and K might display
inconsistencies, given its dependence on the covariation of nutrient concentrations with
other soil properties, rendering prediction outcomes susceptible to perturbations.

Gleaning insights from the aforementioned studies, it is evident that the precision
of soil macronutrient detection oscillates based on the choice of training and testing data
derived from soil samples. Incorporating a broader spectrum of soil samples bolsters
the calibration model, especially when confronting unfamiliar soil types. Furthermore,
there is a discernible correlation between macronutrients, particularly N and P, and SC
content [62,66]. This highlights a prospective avenue to segregate macronutrient detec-
tion from SC metrics. A noticeable trajectory in macronutrient detection methods also



Network 2023, 3 489

emerges, shifting from laboratory-based spectrometers [33,35] to field-compatible Printed
Circuit Boards (PCB), underscoring the potential for on-the-ground, cost-effective, real-time
macronutrient detection systems.

Table 3 provides a summary of traditional methods used for detecting soil TC, TOC,
soil moisture, and soil macronutrients. The table reveals two notable trends in traditional
soil sensing research. Firstly, calibration techniques have evolved from PCR to PLSR, and
now LS-SVM and ANN are gaining prominence due to advancements in computational
methods and neural networks. Secondly, there is a growing emphasis on the VNIR spectral
range, as these wavelengths are more readily available and offer promising applications for
field deployments.

Table 3. Comparison between soil sensing work in four main attributes.

Work Year Category Preprocessing Performance in R2 Calibration Method Spectral Range

Total Carbon (TC) and Total Organic Carbon

[39] 2003 TOC Required 0.9995 Regression VNIR

[42] 2012 TC Required 0.95 PLSR VNIR & MIR

[44] 2014 TOC Required 0.85 PLSR VNIR

[46] 2016 TC/TOC Required 0.94 Artificial Neural
Network (ANN) VNIR

[43] 2019 TOC Required 0.86 PLSR VNIR & MIR

Moisture

[50] 2002 Moisture Required 0.975 Log VNIR

Macronutrients

[35] 2011
N Required 0.90

PLSR/LS-SVR NIR/MIRP Required 0.88
K Required 0.89

[33] 2020
N Required 0.91

Linear/Unique Curve VNIRP Required 0.99
K Required 0.99

[34] 2019
N Required 0.87

PCR/PLSR NIRP Required 0.99
K Required 0.90

[61] 2020 N Required 0.94 PLSR VNIR

[63] 2013 P Required 0.86 PLSR VNIR

However, it is important to note that simply relying on the R2 value is not sufficient
for assessing the efficacy of these systems, as some studies do not provide the scale or
range of concentration levels. A higher concentration range is more likely to result in a
higher R2 value. Additionally, all these studies involve preprocessing steps that, while
improving generalizability and system stability, also hinder their direct application in
real-world settings.

3. RF-Based Soil Sensing Systems in Internet of Things (IoT)

In recent times, the convergence of soil property sensing and the Internet of Things (IoT)
has garnered increasing interest. While the advent of IoT in soil sensing has been relatively
recent, its potential impact on advancing smart agriculture has been profound. A pivotal
application of this is intelligent irrigation, which not only enhances plant growth and
quality, but also conserves water resources [67]. Current soil moisture sensors are often
prohibitively expensive for individual pot deployment [68]. The essence of RF-based IoT
soil sensing revolves around remotely monitoring soil moisture levels. This technological
shift encompasses a range of RF signals, from Wi-Fi and RFID to LTE and LoRa.
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Compared to traditional soil sensing methods, which rely on intricate chemical spectral
analysis and often entail elaborate preprocessing steps [32,33,35–37,69] or specialized
equipment like spectrometers [33,35–37,63], the benefits of IoT in soil sensing are clear-cut.
Firstly, the investment required for IoT systems is generally lower than that for commercial
devices [68]. Modern IoT-based soil moisture sensors are cost-effective. While commercial
alternatives often exceed $100, these systems are typically priced below that threshold,
yet they deliver performance on par with premium devices. Secondly, the adaptability
of IoT systems is commendable; they can be seamlessly integrated beneath the soil’s
surface [12,13,15,16].

Lastly, these systems are equipped with extensive communication capabilities and
compatible with several types of soil surfaces as shown in Figure 3. For instance, the system
in [16] boasts a communication range of 100 ms, while [15] extends this to an impressive
2.4 km.

(a) Sandy Soil (b) Stony Soil (c) Grass Soil

Figure 3. Different types of soil surfaces.

3.1. Wi-Fi Based Soil Sensing Systems

In the study by [12], Wi-Fi technology is incorporated into the realm of smart agricul-
tural soil sensing to measure soil moisture and electrical conductivity (EC). Their system,
which is called Strobe, is devised to detect soil moisture and EC by leveraging RF propaga-
tion within prevalent Wi-Fi bands. The system overview of Strobe is shown in Figure 4.

Figure 4. Wi-Fi-based soil moisture sensing system.

Strobe correlates the Wi-Fi time of flight (ToF) across several antennas and the am-
plitude ratios of these signals to the soil permittivity and EC, attributes influenced by the
soil’s moisture and salinity levels. The equation showcases the correlation between the
RF signal’s propagation speed and the soil moisture level, as depicted in Equation (4) [12].
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Using the speed of light and the Time of Flight (ToF) τ over a specified distance d with the
speed of light c, the apparent permittivity εwi f i can be determined.

εwi f i = (
cτ

d
)2 (4)

Their research effectively highlights the benefits of IoT devices, which are consid-
erably more affordable than traditional commercial devices that can cost upwards of
thousands of dollars.

Another study [13] adopts the center frequency of 2.5 GHz for the soil moisture
sensing task. They introduce CoMEt, an RF-based technique that gauges soil moisture
across multiple depths beneath the ground surface without embedding any equipment
into the soil or directly contacting the ground. CoMEt’s primary insight is the dependency
of an RF signal’s phase on its wavelength in the transmitting medium, which in turn is
influenced by soil moisture levels. They establish a correlation between the wavelength
and the apparent dielectric permittivity, ε, which allows CoMEt to compute ε using the
deduced wavelength values l, as illustrated in Equation (5) [13].

ε = (
c
f l
)2 (5)

Subsequently, they employ the Topp Equation [70] to link the soil’s volumetric water
content (VWC) φ with the apparent dielectric permittivity, as represented in Equation (6) [70].
CoMEt can estimate the moisture content in each layer of the soil.

φ = 4.3× 10−6ε3 − 5.5× 10−4ε2 + 2.92× 10−2ε− 5.3× 10−2 (6)

The system is implemented with a software-defined radio paired with a Raspberry Pi,
allowing real-time soil moisture measurement. In evaluations conducted in indoor and
outdoor settings, CoMEt determined soil moisture across three soil layers with a median
error of merely 1.1%.

3.2. RFID-Based Soil Sensing Systems

In their research, Ref. [14] presents GreenTag, an economical RFID-based system
for soil moisture detection. They utilize two RFID tags attached to a plant container
to convert soil moisture content variations into their Differential Minimum Response
Threshold (DMRT) metric at the reader. Commercial RFID readers offer three signal metrics:
Minimum Response Threshold (MRT), Received Signal Strength (RSS), and phase. These
can be broken down into components influenced by the soil moisture level, as detailed
in Equations (7)–(9) [14]. The constants Cm, Cr, and Cp play specific roles; Cm represents
the tag’s receiving sensitivity. Cr and Cp pertain to the amplitude and phase of both the
reader’s transmitted signal and the reflection coefficient of the tag’s chip. Parameters ha
and hT characterize the channels over the air and the tag’s antenna, respectively, while
theta encapsulates phase information over the air and tag via θa and θt.

MRT = Cm − 20 log |ha| − 20 log |hT | (7)

RSS = Cr + 40 log |ha|+ 40 log |hT | (8)

Phase = Cp + 2θa + 2θT (9)

The system design of GreenTag is shown in Figure 5.
With the incorporation of a low-pass filter to the DMRT metric, their approach ef-

fectively compensates for fluctuations in the external RF environment due to factors like
human movements and changes in pot positioning or pot orientation. Impressively, Green-
Tag boasts a 90th percentile moisture estimation error of just 5%, aligning closely with the
4% errors of high-end soil moisture sensors. The system’s efficacy was tested in an actual
greenhouse setting. Given its affordability and precision comparable to premium soil mois-
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ture sensors, GreenTag holds significant promise in enhancing greenhouse productivity
and revolutionizing smart greenhouse irrigation techniques.

Figure 5. RFID -based soil moisture sensing system.The blue dashed arrow indicates the sweeping of
the reader’s TX power, while the red dashed arrow shows the process of DMRT readings

3.3. LTE-Based Soil Sensing Systems

The prior studies by [12,14] introduced RF-based methods for soil moisture sensing.
While these approaches emphasize affordability, Ref. [15] focuses on reducing additional
device requirements and enhancing energy efficiency. The systems presented in the ear-
lier works necessitate power for the signal emitters (such as Wi-Fi or RFID readers) or
both transceivers (like Wi-Fi AP and clients), which may hinder their large-scale outdoor
deployment. In contrast, the research in [15] presents an economical LTE-based soil mois-
ture sensor using readily available commercial hardware. Unlike Wi-Fi or RFID systems,
the LTE-based setup does not require any additional hardware for signal transmission,
capitalizing on the widespread presence of base stations. Figure 6 shows the hardware
arrangement of their system on the LTE-receiving stage.

Figure 6. LTE-based soil moisture sensing system.

Central to their method is the linkage they draw between the phase changes of the
intercepted LTE signal, soil moisture, and dielectric permittivity. Initially, they utilize
an empirical equation to delineate the connection between the dielectric constant ε and
volumetric water content (VWC) Moi, as presented in Equation (10) and as per [70].

Moi = 0.1138
√

ε− 0.1758. (10)

Through the measurement of the RF wave propagation speed cs in the intended soil,
the dielectric constant can be deduced with the light speed in the air co as illustrated in
Equation (11) [15].

√
ε =

c0

cs
. (11)

Hence, the soil moisture Moi can be inferred from the propagation speed cs of the
RF signal within the target soil. The propagation speed of the RF signal can be de-
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duced from the spacing between two receiving antennas d and the refraction angle θ.
Additionally, γ represents the time difference of signal arrival between the two antennas,
as expressed in Equation (12).

cs =
d sin θ

γ
(12)

They also introduce an auto-calibration mechanism for phase offset, addressing hard-
ware limitations and minimizing the sensor’s energy consumption. Their energy-efficient
design allows the system to operate on battery power for up to 16 months. Not only is their
system considerably more affordable ($55) compared to traditional devices ($850), but it
also boasts a remarkable accuracy (3.15%), rivaling that of premium soil moisture sensors
through extensive experiments. This research significantly advances the application of RF
sensing in real-world smart agriculture scenarios.

3.4. LoRa-Based Soil Sensing Systems

The work of [16] is the first practical deployment of soil moisture measurement using
LoRa signals in open environments. In their study, the authors introduce a system that
utilizes LoRa signals to measure soil moisture without the need for specialized sensors
embedded in the soil. An overview of their system is depicted in Figure 7. The antennas
of the LoRa nodes are embedded in the soil. The LoRa nodes act as transmitters, whereas
the LoRa gateway functions as a receiver, capable of connecting to multiple LoRa nodes.
In contrast to signal types such as RFID or Wi-Fi, the LoRa gateway, which functions as
a receiver, boasts greater capacity owing to its employment of modulated chip signals.
This results in reduced interference among numerous concurrently transmitted LoRa chirp
signals, each utilizing distinct wavelengths, bandwidths, or chip slopes. Conversely, signal
categories like Wi-Fi exhibit heightened contention among concurrently transmitted signals
at the receiving terminal.

LoRa node 
with sensors

30cm

10
0 
m

LoRa node 
with sensors

30cm

1
0
0
 m

LoRa 
gateway

Figure 7. LoRa -based soil moisture sensing system.

Their novel approach extends beyond merely using LoRa for data transmission in
smart agriculture; they incorporate a cost-effective RF switch to alter the signal propaga-
tion path length, enabling precise moisture sensing. The soil moisture can be accurately
determined with the transmission of a single LoRa packet from the node to the gateway.
The underlying principle is that the soil’s dielectric permittivity, which is closely linked
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to its moisture level, can be derived from the phase readings of LoRa signals, as outlined
in Equations (5) and (6) in the work of [13]. To tackle the synchronization challenges
between the LoRa transmitter and receiver, they introduce a cost-effective switch that
outfits the LoRa node with dual antennas. Experimental results with standard LoRa nodes
indicate that their system can reliably gauge soil moisture with an average error of just
3.1%, matching the performance of premium soil moisture sensors. Field evaluations
confirm the system’s capability to accurately detect soil moisture from a distance of 100 m
between the LoRa gateway and node. Moreover, the system demonstrates resilience to
interruptions from pedestrians and moving vehicles, highlighting its robust performance
in outdoor environments.

Table 4 provides a comparative summary of various IoT-based soil sensing technolo-
gies, evaluating them on metrics such as Cost, Coverage Range, Central Frequency, Energy
Consumption, Node Capacity, and Prediction Error. The table reveals that soil moisture
sensing systems utilizing LoRa or LTE technologies tend to offer a larger coverage range.
Additionally, solutions based on LoRa or RFID excel in terms of energy efficiency and sen-
sor node capacity. These systems are also relatively cost-effective compared to traditional
soil reflectance spectroscopy, making them promising candidates for deployment in remote
areas without the need for pre-processing steps. The future direction for these enhanced
systems involves expanding their capability to detect a broader range of soil attributes.

Table 4. Summary of IoT-based soil sensing systems.

Work Category Signal Type Cost Covering
Range Central Frequency Energy

Consumption
Capacity
of Node Error

[12] Moisture Wi-Fi Less than 100 Up to 30 cm
depths 2.4 GHz High Low Less than

3%

[13] Moisture Wi-Fi Less than 100 Up to 38 cm
depths 2.5 GHz High Low 1.1%

[14] Moisture RFID Low 2 m 902.75–927.25 MHz Extremly Low High 5%

[15] Moisture LTE 55 2.4 km 700–800 MHz Medium Low 3.15%

[16] Moisture LoRa 7.5 for LoRa
Switch 100 m 915 MHz Low High 3.1%

4. Inference Method and Evaluation Metrics

In this section, we will discuss several inferential methods and widely used evaluation
metrics used in soil property sensing systems. Section 4.1 introduces the prevalent methods
of spectral analysis used for inference. And Section 4.2 deals with common evaluation
metrics frequently used in most studies.

4.1. Method for Spectral Information Analysis

In the analysis phase for multivariate spectral data collected from spectrometers, sev-
eral methods are frequently employed to construct regression models. These models aim to
predict the concentration level of target elements based on input data (predictors). Initially,
we will delve into two prominent linear regression techniques: Principal Component Re-
gression [71] and Partial Least Square Regression [72–74]. Following these, we will discuss
the Uninformative Variable Elimination (UVE) method that is grounded on PLSR [36,75,76].
Subsequently, we will introduce the machine learning-inspired method, Least Squares
Support Vector Regressions, offering an alternative perspective on spectral data analysis.

4.1.1. Principal Component Regression

Principal Component Regression is a foundational regression technique employed
to establish a relationship between independent (predictor) and dependent (response)
variables in a linear regression framework [71]. PCR leverages Principal Component
Analysis and uses the primary components, notably those with significant variances, as the
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predictors in place of the original data points for regression [71,77]. In the study by [33],
a comparison was made between the PCR model performance and the PLSR method.
Typically, the PLSR approach requires fewer latent variables than PCR for comparable
model outcomes.

4.1.2. Partial Least Square Regression

Partial Least Square Regression is a modeling method commonly used in chemomet-
rics for spectroscopy analysis [72–74]. It is used to build a predictive linear regression model
with independent variables X (predictor) and dependent variables Y (responses). In this pa-
per, the independent variable X comprises the original spectrum information collected from
the photodiode, exhibiting high collinearity within each channel. The concentration level
of a target macronutrient (e.g., nitrogen) serves as the dependent variable Y that needs to
be predicted using the independent variables X and the PLS regression model. During the
analysis process, both X and Y are decomposed into multiple principal components (PC) to
form a linear combination of the original data, which is then projected onto a new space us-
ing latent variables [73,74]. This process can be represented by Equations (13) and (14) [74].

X = TPT + E (13)

Y = UQT + F (14)

The predictor X is represented by an n×m matrix, where n denotes the number of
samples, and m corresponds to the number of available spectra. The response Y is an
n× p matrix, with p indicating the number of prediction targets. For example, p = 1 to
investigate the relationship between the spectral matrix X and the responses Y associated
with a single target, such as the concentration level of nitrogen. The error terms from each
projection equation are denoted as E and F. The score matrices of X and Y are represented
by T and U, respectively, both having dimensions of n× l. The loading matrices for X and Y
are denoted as P and Q, with dimensions of m× l and p× l, respectively. Here, l represents
the selected number of principal components, which convert the predictor X (spectral
matrix) and the response Y into linear combinations of latent variables [73,74]. The choice
of principal components directly influences the precision and stability of the model. If the
number of principal components is too small, some channels’ spectral information will
be restricted. Conversely, selecting too many principal components introduces additional
noise that may affect the system’s predictions. Therefore, selecting principal components
aims to capture as much spectral information as possible while minimizing the impact
of noise by choosing an appropriate number of latent variables. In the study by [32], the
authors utilized the PLSR model on data obtained from LED reflection to estimate the
concentration of nitrogen. They achieved a coefficient of determination (R2) of 0.875 for the
calibration set and 0.803 for the validation set.

4.1.3. Uninformative Variable Elimination Method

In spectral analysis of soil properties sensing, high spectral resolution spectrometers
are utilized, producing a vast number of wavelength variables suitable for the PLSR method.
However, not all wavelengths contribute equally to predicting the desired element. Some
are either insensitive to the target property or are susceptible to noise. The Uninformative
Variable Elimination Method is employed to identify the most pertinent set of wavelengths
by evaluating the cross-validation metrics of resulting models [36,75,76]. Building on the
UVE method, the study by [78] introduced a Monte Carlo (MC) strategy [79] to UVE-PLS,
replacing the leave-one-out approach. This novel method, named the ensemble of Monte
Carlo uninformative variable elimination (EMC-UVE), refines wavelength selection during
data analysis and enhances prediction capabilities for multivariate calibration models.
However, the study by [36] found that while UVE can discard irrelevant wavelengths, it
might also inadvertently remove valuable ones. Therefore, determining the correct number
of wavelengths to retain is crucial.
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4.1.4. Least Squares Support Vector Regressions

Support Vector Machines is a supervised learning method commonly used for classifi-
cation tasks, such as pattern recognition [80], and regression tasks, such as data analysis and
result prediction [81,82]. SVM operates based on statistical theory and maps input data to a
higher-dimensional feature space [82]. However, the high computational burden associated
with SVM limits its applicability in certain scenarios. To address this, the LS-SVR was
introduced for regression tasks. LS-SVR simplifies the quadratic programming problem of
SVM into a linear system, which can be efficiently solved using iterative methods [83]. The
LS-SVR model for function estimation can be expressed as shown in Equation (15) [83].

f (x) =
N

∑
i=1

αiK(x, xi) + b (15)

X represents the input of spectral information collected by the photodiode and f (x)
is the target concentration level of macronutrient. The Lagrange multipliers, denoted as
αi, represent the support values, while the bias term is denoted as b. The kernel function
K(x, xi) plays a crucial role in SVM, and there are various options for kernel selection, such
as the linear kernel, polynomial kernel, and radial basis function kernel (RBF kernel).

The equations for these three kernels are shown in Equations (16)–(18) [83]

K(x, xi) = 〈x , xi〉 (16)

K(x, xi) = (〈x , xi〉+ p)d (17)

K(x, xi) = exp(
−‖x− xi‖2

2σ2 ) (18)

〈· , ·〉 denotes the dot product, p is the bias term, and d is the index for the polynomial
kernel, σ2 is the bandwidth of RBF kernel. Using Grid Search [84] to optimize the parame-
ters of LS-SVR not only ensures prediction accuracy, but also significantly reduces training
time. However, in the study by [36], the application of a nonlinear support vector machine
method did not yield particularly favorable results in terms of the Root-Mean-Square-Error
(RMSE) on the cross-validation set when compared to the performance of PLSR.

4.2. Evaluation Metrics

To assess the performance of models predicting the target element, two prevalent
metrics are typically used to gauge the relationship between predicted values and the actual
ground truth (dependent variable): the Correlation Coefficient (R) and the Coefficient of
Determination (R2). The equations for R and R2 are provided in Equations (19) and (20),
respectively [85].

r =
∑m

k=1(y
′
k − ȳ′)(yk − ȳ)√

∑m
k=1(y

′
k − ȳ′)2 ∑m

k=1(yk − ȳ)2
(19)

R2 = 1− ∑m
k=1(yk − y′k)

2

∑m
k=1(yk − ȳ)2 (20)

where y′k is the predicted value of kth sample and yk is the ground truth of the kth sample.
m is the total number of experiment samples. ȳ and ȳ′ is the mean value of the ground
truth and prediction. The correlation coefficient r ranges between −1 and 1. The coefficient
of determination R2 = 1 if the predicted value y′k exactly matches the observed value yk.
A negative value of R2 suggests that the chosen model performs poorer than a simplistic
model that merely predicts the mean of the observed values.

Three vital metrics used to evaluate model performance are the root mean square error
of calibration (RMSEC), root mean square error of prediction (RMSEP), and root mean
square error of cross-validation (RMSECV). These indicators measure the prediction errors



Network 2023, 3 497

of the model on the different data groups applied to the model. The formulas to compute
RMSEC, RMSEP, and RMSECV are given below [86]:

RMSEC =

√
∑Lc

l=1(ŷl − ycl)2

Lc
(21)

RMSEP =

√√√√∑
Lp
l=1(ŷl − ypl)2

Lp
(22)

RMSECV =

√
∑Lcv

l=1(ŷl − ycvl)2

Lcv
(23)

where l is the sample number, Lc, Lp, and Lcv are the total number of samples in the cali-
bration, validation, and prediction groups. ycl , ypl , and ycvl are the predicted concentration
values of the target element from the validation group and prediction group. The selection
of evaluation metrics can vary between studies based on factors such as sample size and
specific research objectives. For instance, RMSECV is versatile and can be applied irre-
spective of the total sample count, whereas RMSEP is typically favored for studies with
a larger dataset. As demonstrated in [33], they employed a combination of RMSEC and
RMSECV for assessment. Conversely, [32] relied on RMSEC and RMSEP. [35] adapts
RMSEP and RMSECV during the evaluation. A comprehensive evaluation was observed
in [36], where all three metrics were utilized, providing a well-rounded assessment of
their system’s stability.

5. Future Aspect

In terms of hardware, while spectrometers offer an exact resolution for spectral data,
their high cost (exceeding $15k) and stringent environmental requirements significantly
limit their applicability in field studies for soil reflectance spectroscopy. Meanwhile, the rise
of RF-based soil sensing technology presents an enticing potential for soil property sensing
due to its low-cost equipment and wide coverage area. Many of these RF systems can also
remain operational for long periods when deployed in the soil. However, currently, RF-
based soil sensing primarily detects soil moisture levels only. As a result, a Printed Circuit
Board (PCB)-based soil sensing system could be an optimal solution in the future, striking
a balance between device cost and sensing capabilities. From a preprocessing perspective,
it is essential to simplify these steps to transition from laboratory-based experiments to real-
world applications. To accomplish this, we need to address the influences of particle size
and soil moisture levels on reflectance spectroscopy and ensure the stability of prediction
models for targeted soil attributes. On the computational methods front, Partial Least
Square Regression (PLSR) is widely acknowledged as the go-to calibration technique used
in spectral data analysis. However, Least Square-Support Vector Regression (LS-SVR)
also presents acceptable, and at times superior, prediction results compared to PLSR.
Further advancements in neural network methodologies will undoubtedly benefit these
computational approaches.

6. Conclusions

In this research, we present an overview of methods for sensing soil properties, cover-
ing both conventional systems based on reflectance spectroscopy and emerging IoT systems
utilizing RF technologies. The study elaborates on foundational principles and prepro-
cessing requirements in soil reflectance spectroscopy, focusing on key areas such as soil
carbon content, organic carbon, moisture, and macronutrients. The paper also highlights
cutting-edge IoT-based RF systems for soil analysis. To facilitate comparison, we include
two summary tables that contrast results from both traditional and IoT-based approaches.
Additionally, we delve into various methods for data interpretation and the metrics used
for evaluating the outcomes of soil spectral assessments. In the concluding section, we
examine potential future directions in the field of soil property sensing. Overall, this paper
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serves as an all-inclusive guide to soil property sensing, encompassing methods of sensing,
preprocessing, property identification, data interpretation, and evaluation.
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