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Abstract—Drones are gaining more interest from the industry
and the research community as a result of their many advantages,
including low cost, small size, adaptability, and ease of use, as
well as their potential applications. However, current control of
swarming drones relies on stand-alone modes and centralized
radio frequency control from a base station on the ground
which is devoid of drone-to-drone communication. This method
has drawbacks, including a crowded RF spectrum with mutual
interference, high latency, and a lack of on-site drone-to-drone
interactions. Because of its high spatial multiplexing capability,
Line of Sight (LoS) security capabilities, broader bandwidth, and
intuitive vision manner, Optical Camera Communication (OCC)
is considered to be a potential alternative for sensing and commu-
nication in drone clusters. In this paper, we first utilize the rolling
shutter effect in drone sensing and communication and propose
PoseFly, a 4-in-1 AI-assisted OCC with drone identification,
on-site localization, quick-link communication and lighting. We
implement PoseFly prototypes on commercial drones, cameras
and LEDs. Our experiments show our PoseFly achieves nearly
100% accuracy for distance estimation (20m), drone identification
(12m), angle and speed estimation (4m) and 5 Kbps average
quick-link throughput at up to 4 m on current prototypes.

I. INTRODUCTION

Drones are a type of unmanned aerial vehicle (UAV),
that attract more attention because of their advantages over
manned aircraft, including small size, low cost, simplicity of
operation, and broad potential applications [1], [2]. Drones
are now used in a variety of fields, such as aerial pho-
tography, plant protection, express deliveries, transportation,
animal monitoring, surveying and mapping, power inspection,
disaster relief, news reporting, selfies, film and television
production etc. Drones are projected to play significant roles
in integrative development for sensing, communication, and
computing in the near future due to ongoing advances in
Artificial Intelligence and their superior mobility. According
to Verified Market Research, the size of the global drones
market, which was expected to be worth USD 19.23 billion
in 2020, would increase to USD 63.05 billion by 2028 with
a Compound Annual Growth Rate (CAGR) of 16.01 percent
between 2021 and 2028 [3].

Currently, drones are mostly controlled by a centralized
base station (CBS), such as a drone pilot on the ground or a
satellite in orbit, using the radio frequency (RF) spectrum [4],
[5]. These centralized controlling techniques would, however,
restrict the use cases for drones due to their lack of mutual
communication among drones, such as on-site sharing data
directly without the assistance from the centralized base. This

is due to the requirement that each drone in the drone cluster
acquires the command from the CBS and then transmits
its status, including its surroundings and posture state as
measured by its inner sensors such as the IMU (Inertial
Measurement Unit), back to the CBS. Thus, the back-and-
forth communication latency caused by the centralized drone
controlling mechanism, particularly in high motion scenarios,
might result in significant localization errors. For instance, the
0.25s location computation and communication cost for two
drones moving at 20m/s in opposing directions will result in a
10m localization mistake (0.25×20×2). Moreover, as drones
amount increases, the constrained capacity of the RF spectrum
gets significantly more crowded, which may result in bit errors
during re-transmissions and further localization errors.

The transmission between drones and CBS in centralized
control can naturally be avoided by on-site interactions among
drones in a distributed manner. We could use RF to es-
tablish distributed drone-to-drone communication. However,
due to Non-Line-of-Sight (NLoS) propagation, eavesdroppers
can easily detect RF signals, and there is nontrivial multi-
path effects and caused mutual interference [4]–[6]. Even
though there is no back-and-forth communication cost between
drones and the CBS in RF based distributed drone-to-drone
communication, the growing drone population may cause the
RF spectrum to become crowded, which could lead to more
localization errors owing to re-transmission and lag.

There are two main issues for localization of drones with
high mobility: (1) computing a drone’s appropriate localization
information including distance, posture, speed, and so on; and
(2) promptly receiving the computed localization information.
Actually, we can use on-site posture features of a drone
(transmitter) and compute at the receiving side (another drone)
instead of computing at the transmitter’s side IMU to reduce
transmission overhead. For instance, when a flock of geese
are flying together, goose A (receiver) observes goose B
(transmitter) and processes B’s posture features in A’s brain
rather than goose B computing its own position and notifying
A, as shown in Figure 1 (b).

Optical Camera Communication (OCC) has attracted more
attention due to the popularity of commodity mobile devices
with built-in cameras and its low interference with ambient
light compared to photodiode based techniques such as LiFi.
OCC also provides location-based services (LBS) such as fine-
grain AR navigation with the association of data from a visible
transmitter in a flexible communication range [6]–[15].
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(a) PoseFly enables 4 integrated functions (b) geese fly scenario

Fig. 1: PoseFly: 4-in-1 OCC for swarming drones, similar to geese flying and their relative localization and collaboration.

Motivation: (1) Current control of swarming drones relies
on stand-alone modes and centralized radio frequency control
from a base station on the ground which faces severe interfer-
ence when the number of drones increases. (2) Existing drone
localization includes drawbacks such as requiring communi-
cation time cost to send out the computed localization data,
which may cause non-trivial localization errors due to latency
and the high mobility of drones. (3) Commercial drones are
more suited for optical camera communication among drones
since they are equipped with cameras for photographing and
LEDs for indicating and lighting. (4) Finally, drones can share
their computed on-site postures to other drones via secure
OCC quick-link for collaboration.

Our Approach: In this paper, we propose PoseFly, which
first exploits 2D spatial diversity of rolling shutter cameras
in on-site drone positioning. PoseFly is a 4-in-1 cheap and
efficient approach for high-capacity drone identification, on-
site pose parsing for drones, quick-link communication, and
lighting, as shown in Figure 1 (a). PoseFly requires only 4
cheap, single-color LED components with plastic covers (One
is red, three are green) controlled by an Arduino Nano MCU
(<$10) and a commercial camera mounted on the drone. The
red-colored LED mounted on the drone’s left-front corner
emits distinct cyclic OOK (On-Off Keying) waves that serve
as its unique invisible optical identification label. Therefore,
drones can reliably identify other drones via camera. When
paired with the other three green LEDs, the red led can also
be utilized as a positioning element. Based on the variations
in the geometry of the quadrangle generated by these four
LEDs, PoseFly can parse the drones’ poses and share such
data among other drones via OCC quick links.

There are three main technical challenges, as shown in
Figure 2 and illustrated below. C1: Robust identification in
long distance for drones. It is not as easy for drones to
recognize other drones with similar appearances via vision
recognition as it is for geese. Instead, we can attach optical
marks or labels on drones. However, static marks or existing
bar/QR codes are passive, they can only work within limited
recognition distance such as 1 m. C2: Lightweight but precise
localization (distance, speed, angle). Geese can sense the
posture of other geese via many vision features such as the
head, wings and feet, etc. If we sense the drone posture with
the same method, it will introduce non-trivial computation

overhead. C3: Decoding asynchronized rolling strips in rolling
spots with random locations in a frame. Generated rolling
strips in each rolling spot are not synchronized for decoding
with flying drones.

Our contribution can be summarized as follows:
(1) This is the first work to exploit rolling patterns for on-

site drone posture parsing, including relative distance, speed
and angle estimation, which was solely used for optical camera
communication before.

(2) We thoroughly investigate the spatial rolling patterns and
design the 4-in-1 PoseFly, an AI-assisted approach for drone
identification, drone localization, drone communication, and
lighting with commercial LEDs and cameras.

(3) We address challenges via cyclic pilots and OOK for
active optical labeling and robust quick-link communication.
We adopt CNN models for accurate and robust identification,
localization at the receiver side.

(4) We evaluate PoseFly on our implemented prototypes in
both day and night with varying distance and motion speed.
Experiment results show that PoseFly can identify drones with
nearly 100% accuracy within 12 m while providing accurate
pose parsing (100% distance estimation within 20 m, 100%
speed and angle estimation within 4 m). Besides, PoseFly
provides 5 Kbps quick-link channel up to 4 m on average.

The rest of the paper is organized as follows: Section II
introduces background and related work. Section III gives
the system overview. Sections IV-VI illustrate 3 functions
except PoseFly’s lighting function: Drone Identification, Drone
Localization, and Drone Quick-Link. Section VII presents
PoseFly implementation. Section VIII reports the performance
evaluation of PoseFly. Finally, we have some discussion and
conclude the paper in Section IX and Section X.

II. BACKGROUND AND RELATED WORK

A. Drone Identification

Vision based methods could be used to identify drones. For
example, a camera can take an image of a drone and identify
it based on its shape and features. The reader then uses the
gray-scale image of the scene and detects the drone based on
its silhouette [16]. However, these systems cannot work well at
night, as the captured images of drones are not clear enough,
nor do they work at longer distances. RF systems can identify
drones in a few ways: Drones typically communicate at a
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much higher frequency than other mobile devices. If the RF
connection is monitored, the used frequency could be utilized
to determine if a device is a drone or not. However, other
wireless devices could communicate at the same frequency and
thus it couldresult in a mis-identification [17]. Instead of the
clear images with complete morphology needed by computer
vision or confused RF spectrum indication, PoseFly simply
requires one active LED node which holds the indication
sequences and can work well in both day and night.

B. Drone Localization

We present the related work of drone localization below and
illustrated in Figure 3. (1) Current RF-based drone localization
methods are based on received signal strength (i.e., RSSI, CSI)
or time difference of arrival. By monitoring the signal strength
of an emitter or the change in time of its arrival, a receiver
could determine the direction and speed of the drone. However,
interference in the path can corrupt the localization results
[18]. (2) Vision based localization approaches use cameras
to record several frames of a scene, then detect a drone
and calculate its velocity and future position [19]. While this
is certainly effective, it has non-trivial processing overhead,
especially for image processing of morphology with varied
background when the drone is flying. (3) IMU. Drones can
also measure their own localization date (e.g., position, and
velocity) via an inertial measurement unit (IMU) and send
them out to other drones. However, these messages would
need to be sent constantly and received over long distances.
Thus, the IMU based methods have non-trivial send-out com-
munication overhead and time delay, especially when there are
numerous drones with severe interference [20]. (4) Although
GPS systems can provide accurate location information, they
also have send-out cost and cannot work well in urban areas,
caves, tunnels, etc. (5) LiDAR systems can provide on-site
localization of nearby drones. However, laser generation and
scan processing cost non-trivial energy [21].

In contrast to the above mentioned drone localization ap-
proaches, PoseFly only requires one frame image to deter-
mine velocity and orientation. PoseFly uses 4 LED nodes
to illustrate which direction the drone is facing, allowing
orientation to be found. Velocity can also be found through

the orbs, as the faster the drone moves, the more the orbs
will deform in one direction. It is free from interference from
multiple drones thanks to the spatial diversity of millions of
pixels from the camera to capture them into different image
zones. The illuminated balls allow PoseFly to work during day
and night over flexible distances. Considering these energy
efficient LED balls also provide lighting function, PoseFly is
a green localization approach. Moreover, the localization of
PoseFly does not have a send-out cost as the reader captures
the drone’s image (the light propagates at high speed of 3×108

m/s) and then processes it locally. Besides, PoseFly’s on-site
localization only relies on the drones themselves and thus can
work in caves/tunnels where GPS can not work.

C. Drone Communication

Today, most drones communicate via the radio frequency
medium. RF signals can travel over relatively long distances.
However, RF systems can be prone to eavesdroppers, jammers,
and interference [22]. The RF signal is sent through the open
space and anybody can listen or send their own confounding
signals. PoseFly utilizes Line-of-Sight propagation and thus
the signals from the swarming drones can be blocked out
from attackers which makes it more secure than RF-based
communication. Similarly, jammers must send more light
directly into the receiver to jam the camera.

III. SYSTEM OVERVIEW

Our proposed 4-in-1 optical camera communication, Pose-
Fly, is composed of two parts, as illustrated in Figure 4: (1)
commercial LED based PoseFly Transmitter, (2) AI-assisted
commercial camera based PoseFly Reader. One drone can
equip both transmitter and receiver as a transceiver.

PoseFly transmitter: PoseFly transmitter consists of 4
commercial low-power LED components attached on each
corner of a four-rotor drone. Of these 4 LEDs, one is red
while the others are green, and are covered with plastic balls
of the same color and controlled by an Arduino Nano.

PoseFly receiver/reader. PoseFly reader is based on com-
mercial cameras, which can be the mounted cameras on the
drones. These cameras use adjustable focal length lenses and
configurable rolling shutter rates and frame rate.
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Fig. 4: The system overview including the transmitter and receiver, and the workflow of PoseFly.

4-in-1 Illustration: (1) Drone identification: The red LED
generates OOK waves with cyclic pilots to indicate the index
of a drone in the drone cluster. For example, the OOK wave
[on, off, off, on] indicates the index of the drone is 0b1001,
which is # 9. (2) Drone on-site localization: The PoseFly
reader can estimate distance from the transmitter to
the reader based on the size of captured four LEDs. Further-
more, the reader can conduct on-site angle parsing
based on generated shape and color pattern of four LEDs.
Additionally, the shape of the rolling spot varies from normal
circle to ellipse with different motion speed of drones, which
can help the reader to conduct speed estimation. (3)
Drone quick-link: At the same time, the other three green
LEDs create the quick-link channel among nearby drones by
fast on-off switching. (4) Lighting: These LED components
provide a lighting function in a dark environment or at night.

Workflow: As shown in Figure 4, these four functions
are achieved at different distances between two drones step
by step. (1) Firstly, when a drone, Drone A, notices there
is a bright spot, which is another drone, Drone B, based
on B’s lighting function in long distance (>20m) via its
camera. (2) Then Drone A will fly closer to B based on its
distance estimation (<20m) function and conduct the drone
identification (<12 m) to know the index number of Drone B
in the cluster of drones. (3) Later, Drone A flies closer to B and
performs finer-grained localization of B such as the estimation
of motion speed and posture angle of B. (4) When these two
drones require mutual data sharing, they can fly closer within
4 m and utilize the quick-link channel to share information
such as fly instructions, on-site posture info of other drones.

IV. DRONE IDENTIFICATION

For drone interactions, drone detection is critical. However,
current optical labels like barcodes and QR codes are passive
and only function at close ranges of a few centimeters. To
overcome this limitation, we design active optical labels for
drone identification in long distance (up to 12 m). We present
our active optical label design at transmitter side and the CNN
based robust label parsing solution below.

A. High-capacity Optical Labeling

Rolling Shutter strip Effect. The global shutter exposes
the entire scene at once. The rolling shutter in commercial
CMOS cameras, in contrast, expose only one row of pixels

while concurrently creating an entire image row by row. Figure
5 illustrates the rolling shutter strip effect, which happens
when the rolling shutter speed and the switching speed of the
light wave from the transmitter are about equal. Thus, temporal
optical signals carrying transmitted data during symbol periods
can be successively collected as rolling strips.

CP-OOK Label Wave Design. In PoseFly, each drone
is identified by an optical label that regularly emits distinct
amplitude waves that are invisible to human eyes (the On-
Off switching rate is too high in terms of the KHz frequency
to be sensed by human eyes [11], [14], [23]). The optical
label is comprised of two components: (1) CP (cyclic pilots),
which begin with one symbol period with an adjustable symbol
period (strip width) and is used to distinguish an entire optical
label, and (2) indication symbols, which are made up of
four (or more) OOK (On-Off Keying) symbols. There are two
amplitude levels besides darkness in the Off symbol, generated
by PWM (pulse width modulation) control: the On symbol has
a lower brightness than the CP symbol while the CP symbol
has the highest brightness.

High Indication Capacity. We embed a drone’s binary
index into OOK indication symbols. The binary number is
1001 when the drone index is 9 with indication symbols
of [On, Off, Off, On]. The amount of drones in the drone
cluster determines how long the indication symbols are. 4
OOK symbols can indicate up to 16 drones. In general, N
OOK symbols can represent 2N numbers for 2N drones, which
is promising for high-capacity indication and identification of
drone swarms. Although some drones may be very close and
appear in the FOV of the camera at the same time, different
optical labels can notify the observing drone who they are.

B. CNN based Robust Label Parsing

Traditionally, the amplitude threshold was used to decode
these optical labels. But it is difficult to configure the thresh-
old dynamically due to the drones’ nonlinear movement,
long distance and the dynamic optical environment. For the
following reasons, we adopt Convolutional Neural Network
(CNN)-based label parsing in PoseFly to avoid the complexity
and decoding overhead: (1) Online identification and offline
training can reduce latency for real-time drone label parsing;
(2) the CNN model can learn the features in the repeated dark
and bright rolling strips even in conditions where it is difficult
to distinguish the amplitude of CP and On.
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Fig. 6: Adopted CNN networks in PoseFly: ResNet-18 with
modified fully connected layers.

We capture real images of optical labels from 15 drones
at various distances during day and night to use as training
data. The CNN models adopted in PoseFly shown in Figure 6
use the ResNet-18 architecture. They are the Drone Identifica-
tion Model (DIM), Distance Estimation Model (DEM), Speed
Estimation Model (SEM), and Angle Parsing Model models
(APM). PoseFly has demonstrated exceptional performance on
image classification tasks , which is extremely appropriate
for our objective of identifying rolling strip patterns and the
created shape with color patterns in Section V. The last
fully connected layer’s output feature is modified to meet the
number of options (e.g., 15 in DIM, 5 in DEM, 4 in SEM,
and 8 in APM) while keeping other layers the same.

V. DRONE LOCALIZATION

The on-site drone localization (pose parsing) in our pro-
posed PoseFly consists of three parts: (1) distance estimation,
(2) relative speed estimation, and (3) on-site angle parsing. We
present challenges and design details below.

A. Relative Distance Estimation

For drone localization, the perception and estimation of
distance is very important for the interactions among flying
drones. For example, accurate estimation of distance between
two drones can help avoid unexpected collisions and keep the
specific flight formations similar to geese flying for complex
collaboration and tasks. The quadrangle generated by the four
LED spots in our PoseFly transmitter can give another drone a
rough estimation of the distance between themselves. We use
the rough size of the captured quadrangle of drone to infer the
current relative distance between two drones.

As shown in the bottom of Figure 7, we can estimate the
distance based on the captured drone size because the drone
size increases when the drone is getting closer to the other
drone due to the spatial perspective principle. We first collect
the captured images (camera is set with fixed focal length) at
different distances and use this data set to train the CNN model
for classification offline. Then we can use the trained CNN
model to predict and estimate the current relative distance
between two drones in real-time.

To filter out the strong ambient light and emphasize the 4
colored spots, we set the rolling shutter with a high shutter
speed such as 4000 Hz in our experiments. In our current
version of PoseFly, we set 5 distances: 4 m, 8 m, 12 m, 16
m, and 20 m. The captured quadrangles in day and night with
random poses are shown in Figure 12 (c).

B. Relative Speed Estimation

The same as distance estimation, the drone speed is critical
for drones’ collaboration and accident avoidance. In PoseFly,
we exploit our discovered relation among motion speed and
the varied shape of the spot generated by one of four LEDs.

First, we explore the relationship between different motion
speeds and the captured spot shape at the same distance
between the camera and the light source. We set different
motion speeds for the light source to simulate the drone’s
different motion speeds and capture the shape of generated
spot. As shown in Figure 8, we set 4 levels of movement
speed of the light source (i.e, static, low, medium, and fast)
and move the light source within the same movement path
(↗). Without movement in the front and back direction, the
shape of captured rolling patterns changes. As the speed of

Fig. 7: Distance estimation via perspective principle: the
longer the distance, the smaller the captured drone size.

Fig. 8: Relations with motion speed and varied spot shapes:
the greater the speed, the larger the spot shape variation.



the light source increases, the shape morphs from a circle to
an oval with speed, so does the length of the ellipse’s long
axis for both light sources with and without embedding data.

In PoseFly, we captured images of the shapes of each spot
generated by four LEDs speed estimation within 4 m. To make
the SEM more robust, we capture these images during day
and night with 4 different motion speeds with random moving
paths and used these images as a training dataset for SEM.

C. Relative Angle Parsing
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Fig. 9: On-site angle parsing via colored-arc variation.

We model the drone as a rigid body and use the plane
generated by the four LEDs to denote the bottom plane of
the drone. The red LED is mounted at the left-front corner
of a drone and it can be treated as the positioning element to
denote the facing angle of the drone.

As shown in Figure 9, we define the relative angle as 0◦

when the camera captures a drone’s tail end. Then the captured
red spot is rotated 45◦ in the clockwise direction. Using the
same rule, we define 8 relative angle statues in total: [0◦ or
360◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and 315◦]. Naturally,
we can determine the relative angle of the captured drone
based on the position of the red spot in the color arc in images.
However, due to the small size of LED spots in captured
images, it is hard to judge the relative angle. Thus, we employ
CNN models to learn the relative angle features offline and
then predict the relative angle in the captured image in real-
time, similar to the AI method used in previous optical label
parsing, distance estimation, and relative speed estimation.

Similarly, we set high rolling shutter speed to avoid the
ambient light when we capture the images of color arcs. The
captured images for training at 4 m in day and night are shown
in the bottom of Figure 9.

VI. DRONE QUICK-LINK

The sensed postures of nearby drones can be stored locally
for the usage of the drone itself. At the same time, this posture
information can also be shared with nearby drones to extend
the communication ranges by using some drones as the relay
nodes. Thus, even if some drones are far away or blocked
by other drones due to LoS (line-of-sight), they can still
communicate with each other. To achieve this goal, we design
a quick-link channel for data sharing and communication and
present the details of the PoseFly quick-link below.

A. Modulation Design

Quick-link is one type of OCC, which provides a data
sharing ability for a small amount of burst data [23]. In
PoseFly, we design quick-link to provide a robust optical
channel with a similar data rate level (hundreds of bps to
several Kbps) besides other 3 functions synchronously. The
challenge here is that the captured 3 green spots are randomly
located in a captured frame due to the high speed of motion
of the drone and variation among frames. Thus, even though
we successfully recorded the data in one of the three green
spots, we are unable to identify which spot it is and cannot
eventually complete the correct decoding. Furthermore, in con-
trast to optical labels in Section IV-A, if we adopt PWM and
use amplitude shift keying, it will sacrifice the transmission
bandwidth and decrease data rate significantly.

In PoseFly, firstly we can determine which green spot (i.e.,
L1, L2, or L3) based on the colored arc in the captured
image. For the modulation in each green spot, we design
CP (cyclic preamble) based on cyclic OOK data sequences
with only bright and dark amplitude levels for a robust quick
link. The CP takes the same duration with the CP in optical
labels illustrated in Section IV. The CP in green spots are dark
strips with adjustable width. The symbol length of OOK data
sequences is set as 32 bits while setting the beginning symbol
and the end symbol as On as gaps between CP and valid data
symbols shown in Figure 10. The data sequence may contain
the same length of dark strips as the CP which may make it
hard to recognize the CP during rolling strips. Nevertheless,
we can set the CP to have a long symbol length to prevent this
from happening to confuse decoding. For example, if we set
CP with 8 symbol periods, the possibility of the inside data
sequence containing 8 continuous Off symbols is (30-8) / C8

30

≈ 4x10−6, which is low enough for potential conflicts. Thus,
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Fig. 10: Quick link modulation design in PoseFly.
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we set the CP as 8 continuous Off symbols. The data amount
embedded in each spot depends on how many rolling strips
are in it and the total data amount in one image frame is the
sum of number of strips in all three spots. In each frame, we
embed the different data into three green LEDs and choose a
proper symbol duration of OOK and CP to guarantee there is
over one entire cyclic CP and data sequence in one spot.

To robustly detect the data symbols between CP, PoseFly
performs quick link communication within 4 m. As shown
in Figure 11, whatever the position of the three spots is in a
captured frame with different motion, the strips are clear. So,
using the three transmission units that were recorded in each
frame, we could collect the data from each green spot and
then reconstruct the bit stream. Finally, the data is transferred
via the quick link provided by PoseFly, frame by frame.

In our prototype, each image frame embeds 30×3 (the
number of spots) = 90 valid OOK data symbols (i.e., 90 bits).
The camera frame rate is set as 60 frame per second. The
quick link in our proposed PoseFly can achieve the 60×90 =
5400 bits per second data rate, which is 5.4 Kbps, enough for
quick link communication among drones to send commands,
urgent messages, pose information of drones etc.

VII. SYSTEM IMPLEMENTATION

A. Transmitter

We implement the PoseFly transmitter prototype for exper-
iments as shown in Figure 12. The main components in one
PoseFly prototype are shown in Table I: entry-level drone, 1
Arduino Nano MCU, 1 red and 3 green LEDs wrapped with 1
red and 3 green plastic balls (ϕ = 19mm). The total weight of
added components in PoseFly except the drone is 25g (we use
the battery of the drone itself for powering the Arduino Nano)
while the total price except the drone is only about 12$.

B. Receiver

There are numerous commercial smart devices that can be
used as the PoseFly reader in our prototype. As shown in
Figure 12 (b), these commercial camera devices are widely
available and reasonably priced such as VIVO Y71A, and
the iPhone 7 we used. To extend the distance for usage of
PoseFly, we use a commercial portable lens for smartphone
photographing, the price of the lens we used is about 5$. This
universal 20x lens can capture the clear images of objects in
long distance. In real use scenarios, PoseFly receivers are the
mounted cameras similar to cameras in our prototype.

TABLE I: Components in PoseFly.

Component Price ($) Details
entry-level drone 40 size: 14cm x 14cm, 125g

Arduino Nano 10 ATmega328P, 5V, 16M
LED 0.1 5mm, green/red, 20000mcd, 20mA

plastic cover 0.3 19mm, green, lightweight
portable lens ≈ 8 Bostionye 20x mobile lens
Total price < 60 mass produced, cheaper the price

C. Setup

Drone size. The drone used in our prototypes is tiny sized:
14cm×14cm. In the future, we can equip PoseFly on bigger
drones (e.g., 1m×1m) to have better performance such as
longer distance and higher data rate because of stronger LED
power and higher number of strips shown in LED spot.

Different optical environment. Figure 12 (c) shows the
scenarios of our implemented PoseFly transmitter flying in
two environments (day and night). Figure 12 (c) also shows the
experiment scenarios in day and night with different distance.

Simulate the drone flying. In our experiments, we hold the
drone in hand or hang it on a hanger and simulate flight with
different distances, angles, and speeds to the PoseFly receiver
(smartphone) in day and night.
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VIII. PERFORMANCE

A. Identification Accuracy

In our experiment, we evaluate the identification accuracy
of 15 active optical labels with index number in range of [1,
15]. We capture the optical labels shown in the red LED spot
at 3 distance settings: 4 m, 8 m, and 12 m in both day and
night time with random postures of the drone.

We capture 10 images for each setting (a specific optical
label, a specific distance, day/night setting), thus in total we
have 10×15×3×2 = 900 images as training dataset. The
sampled images of label #4 are shown in Figure 13 (a). We
evaluate the label identification accuracy performance during
day and night, and their training loss in [0, 200] epochs.

Although the number of strips displayed on the cover
become less with the increased distance from the drone to
the camera and hard for recognizing by human eyes as shown
in Figure 13 (a), the cyclic rolling pattern is still good enough
for CNN to be classified which is demonstrated by Figure 13
(b). The identification accuracy of 15 optical labels achieves
average 100% in day time and more than 97% at night. The
training loss curve for data set of day time drops faster and
earlier than the night as shown in Figure 13 (c). The reason
is that it is harder to distinguish amplitudes between CP and
On symbols at the night due to the fusion of optical signals.

B. Localization Accuracy

1) Distance Estimation:
We evaluate the distance estimation accuracy of 5 settings

in [4 m, 8 m, 12 m, 16 m, 20 m]. We capture the spot shape
of the drone with random postures and speed in both day and

night time. We capture 10 images for each setting (a specific
distance, day/night setting), thus in total we have 10×5×2 =
100 images as the training dataset.

As shown in Figure 14 (a), the distance estimation accuracy
during day time among all distance settings achieves 100%,
which demonstrates our PoseFly can provide distance ranging
within 20m among drones during day time. Similarly, PoseFly
also works well for distance estimation at night with 100%
accuracy within 20m.

2) Relative Speed Estimation:
We evaluate the speed estimation accuracy of 4 settings

in [static, low, medium, fast]. We capture the spot shape of
drone with random postures at 4 m during both day and night
time. We capture 10 images for each setting (a specific speed,
day/night setting), thus in total we have 10×4×2=80 images
as the training dataset.

As shown in Figure 14 (b), the speed estimation accuracy
during the day time among all four speed settings achieves
100% for both day and night, which demonstrates our PoseFly
can provide robust relative speed estimation among drones.

3) Relative Angle Parsing:
We evaluate the relative angle estimation accuracy of 8

settings in [0◦ or 360◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦,
and 315◦]. We capture the spot shape of the drone with
random speed at 4 m both day and night time. We capture
10 images for each setting (a specific relative angle, day/night
setting),thus in total we have 10×8×2 = 160 images as the
training dataset. As shown in Figure 14 (c), the CNN model
saved at the 200th epoch can classify the drones with different
relative angles of 8 options accurately for both day and night
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with estimation accuracy of 100% within 4m sensing distance.
To sum up, our AI-assisted drone pose parsing/localization

works well for all three aspects during day and the night in
different distances for the flying drones.

C. Quick-link Evaluation

We evaluate the Quick-link performance within 4m (0.5m,
1m, 1.5m, 2m, 2.5m, 3m, 3.5m, 4m) during both day and night.
We set the shutter speed properly (12Khz) with transmission
frequency to capture clear rolling strips shown on the three
green spots in each frame and set the frame rate as 60FPS. For
each setting (a specific distance, day/night setting), we capture
10 images, thus totally 8×2×10 = 160 images to measure its
BER and achieved throughput.

BER performance. We decode OOK data sequence inside
of two CPs. As shown in Figure 15 (a), the bit error rate
in each frame is 0 within 2m for both day and night. With
the increased distance, the BER increased as well due to the
weaker optical signals at longer distances. Nevertheless, our
prototype still achieves the average BER less than 0.08 at 4m.
The reason the BER is higher during the day than at night
is because of the lower amplitude gap of the captured On
symbols and Off symbol during day due to the strong ambient
light than at night for the same distance.

Throughput performance. The valid data bits in each
frame is the sum of valid data in three green spots, which
is calculated by 30 bits (32-2)×3×frame rate (60 FPS)×BER.
As shown in Figure 15 (b), our PoseFly achieves 5.4 Kbps
within 2m for both day and night. Although the throughput
drops with increased transmission distance, the dropped data
amount is limited. Even at 4m, our PoseFly still achieves the
average throughput over 5 Kbps. Although the captured spot
size is decreased by the increased distance, we can still capture
the complete and differentiable strips at 4m with lens.
D. Overhead

Computation overhead. LEDs provide lighting function
and are energy efficient. Thus, we only consider the compu-
tation overhead at reader side. The reader should not conduct
complex computations and consume energy too fast. The
training processes are offline, the drone identification, distance,
speed, and angle estimations are real-time tasks conducted
with low computation cost for each step when the drone is
flying. As shown in Figure 16, the quick link requires the

most memory resources due to more narrow strips in decoding
compared with CNN based tasks mentioned above. For all
these tasks, they require a combined 313 MiB of memory and
is not a computational burden for a commercial smart device.

Latency. For collaboration tasks among drones, time can
be important to improve the efficacy and efficiency. Compared
with state-of-art drone localization systems, including audio-
based systems, PoseFly has nearly no time delay in signal
propagation due to the fast propagation of light. Thus we only
consider the computational latency. As shown in Figure 16,
the drone identification, drone on-site localization (distance,
speed, angle estimation) have a low running time of about
0.07s-0.09s for each. These functions can be run in a pipeline
manner (i.e., 0.07s-0.09s in total) and thus achieve the real-
time on-site pose parsing. For example, given 2 drones with
20m/s relative speed, after drone A completes its pose parsing
function for drone B, the parsed distance may only have
20m/s×0.09 = 1.8 m distance estimation error. The distance
estimation in PoseFly is designed for discrete distance ranges
[4 m, 8 m, 12 m, 16 m, 20 m], and 1.8 m distance estimation
error is acceptable and practical. In contrast to real-time on-
site drone pose parsing, the quick link function is designed for
information sharing (e.g., roughly which drones are nearby,
some broadcast commands) if needed which does not strictly
require real-time communication. Thus, 0.31 s latency is
acceptable, which is similar to the collaborations among geese.

IX. DISCUSSION

Comparison with Existing Work. (1) Passive optical label.
Compared with passive optical labels such as bar codes and
QR codes with similar size (2 cm x 2 cm) as the red cover in
our prototype, we measured that these passive optical labels
are only workable within 50cm. (2) RF-based localization.
RF-based localization can provide distance estimation error
within about several meters with a localization time of more
than 70 seconds while not providing other aspects of drone
pose parsing in our PoseFly such as angle and speed estima-
tion [24]. (3) RF/OCC communication. RF techniques can
provide long communication distance, however, they face the
severe interference when there are massive drones. Existing
OCC approaches can achieve similar several Kbps throughput
ability, however, they do not provide optical labeling, and on-
site localization functions [25].



Other Concerns. (1) discrete value. Current PoseFly pro-
vides discrete relative localization instead of continuous rela-
tive distance/angle/speed value. However, PoseFly is designed
for swarming drones’ collaboration which does not require the
exact value of relative positioning, similar to geese flying. (2)
modulated ambient light. Although there are modulated light
such as LiFi (>100KHz) transmitters, our PoseFly can filter
them out via spatial diversity of millions of camera pixels
and a different frequency (about 10 KHz). (3) frame gap
loss. The transmitted data in quick-link channel are repeated
for broadcast and thus the frame gaps caused data loss will
not impact the final decoded data. (4) foggy weather. The
foggy weather can impact light propagation. However, our
PoseFly is designed for swarming drones. Provided two nearby
drones can sense and communicate with each other in foggy
weather (i.e., less than 4m), the network of swarming drones
can still work. (5) future work. We will investigate vision
geometry-based algorithms and models for localization instead
of discrete CNN classification to reduce overall dependency on
CNN. We will also explore the upper bound of the PoseFly
by extended experiments and prototype upgrade as well as
security concerns in the future.

X. CONCLUSION

In this paper, we propose PoseFly for simple and robust
on-site drone pose parsing via 4-in-1 optical camera commu-
nication. We design a color-arc scheme and investigate spatial
embedding ability of rolling shutter cameras and first exploit
it for drone localization including relative distance, speed, and
angle estimations. Besides, we design active optical labels with
cyclic pilot and data sequences in frame-level for high-capacity
drone indication and quick-link communication for real-time
and smooth collaboration among drones. Finally, we conduct
experiments on implemented prototypes in various scenarios.
The solid experiments show that our PoseFly can achieve near
100% accuracy for drone identification at up to 12m, 100%
drone localization as well as 5 Kbps average data rate with
average BER lower than 0.08 at up to 4m for both day and
night. These results demonstrate our PoseFly works well.
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