
1

Handling Data Heterogeneity in Federated Learning
via Knowledge Distillation and Fusion

Xu Zhou, Xinyu Lei, Member, IEEE, Cong Yang, Yichun Shi, Xiao Zhang, and Jingwen Shi

Abstract— Federated learning (FL) supports distributed train-
ing of a global machine learning model across multiple devices
with the help of a central server. However, data heterogeneity
across different devices leads to the client model drift issue
and results in model performance degradation and poor model
fairness. To address the issue, we design Federated learning with
global-local Knowledge Fusion (FedKF) scheme in this paper. The
key idea in FedKF is to let the server return the global knowledge
to be fused with the local knowledge in each training round so
that the local model can be regularized towards the global optima.
Therefore, the client model drift issue can be mitigated. In FedKF,
we first propose the active-inactive model aggregation technique
that supports a precise global knowledge representation. Then,
we propose a data-free knowledge distillation (KD) approach to
enable each client model to learn the global knowledge (embedded
in the global model) while each client model can still learn the
local knowledge (embedded in the local dataset) simultaneously,
thereby realizing the global-local knowledge fusion process. The
theoretical analysis and intensive experiments demonstrate the
superiority of FedKF over previous solutions.

Index Terms—Federated learning, data heterogeneity, knowl-
edge distillation.

I. INTRODUCTION

FEDERATED learning (FL) supports distributed training
of a global machine learning model across multiple

devices with the help of a central server. The local dataset held
by each device is never exchanged in FL, so the local dataset
privacy is protected. The most famous FL algorithm is FedAvg
[2]. In one round of FedAvg training, a central server sends
the global model weight to a portion of distributed devices
(i.e., active clients). Then, each device trains the model using
the local data. Next, each device sends the new model weight
to the central server, which is responsible for computing the
new aggregated averaged model. Afterward, the server sends
the new global model to some re-selected active clients to start
the next round of FedAvg training. After numerous rounds of
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training, the ML model can be well-trained. Each device can
exploit the well-trained ML model for different applications.
In this paper, we refer to devices as clients in FL.

In recent years, FL has been intensively studied in both
academia and industry [3]–[7]. One problem rooted in FL
is that the heterogeneity of data across different clients can
lead to significant model performance (i.e., test accuracy)
degradation [8]–[10]. For example, multiple hospitals would
like to collaboratively train a disease diagnosis ML model via
FL. Each hospital collects patient data independently, so their
datasets are unbalanced and non-IID (i.e., heterogeneous).
One hospital might have few/no data samples belonging to
a certain disease class. When each hospital trains the model
locally, its local objective may be far from the global objective.
Thus, the averaged global model can be away from the global
optima. This phenomenon is called client model drift in some
literatures [11]–[14]. The client model drift may lead to poor
global model performance.

Except for poor model performance, data heterogeneity may
also lead to poor model fairness. Consider a disease diagnosis
ML model that is trained by multiple different hospitals via FL.
These hospitals collect patient data in different geographical
areas with different race populations. The FL-trained ML
model can achieve high averaged model performance, but it
may have large model performance variance across different
hospitals (when testing on their local patient datasets). If so,
the ML model has biases against certain geographical areas
(i.e., geographical discrimination) and race populations (i.e.,
race discrimination). To mitigate such a model bias issue,
the FL-trained ML model should also achieve high fairness,
which can be measured by the degree of uniformity in model
performance across different clients. The considered concept
of fairness is also named accuracy parity [15].

To handle data heterogeneity in FL, several previous solu-
tions have been developed. These solutions can be roughly di-
vided into three categories: 1) model performance-based solu-
tions [11]–[14], [16], [17], 2) multiple-objective optimization-
based solutions [15], [18], and 3) personalized FL solutions
[19]–[21]. For the model performance-based solutions, they
merely consider improving the model accuracy in heteroge-
neous FL, so the fairness issue is not well addressed. As to
the multiple-objective optimization-based solutions, they aim
to optimize multiple objectives such as model performance,
fairness, robustness, etc. However, they usually trade off model
performance for higher fairness, so the model performance
in these solutions is worse than FedAvg. Personalized FL
solutions work on the post-model-training phase (i.e., model
adaption phase); thus, they are a complementary approach to
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TABLE I
COMPARISON AMONG DIFFERENT PREVIOUS SOLUTIONS AND ( : ”YES”, #: ”NO”).

Solutions Over FedAvg Fairness-Aware No Proxy No Additional
Model Performance Data Required Info. Leakage

Model performance-based

FedAvg [2] # #   
FedGen [13]  #  #
CCVR [16]  #  #
FedDF [12]  # #  

FedProx [11]  #   
MOON [17]  #   

FedGKD [14]  #   
Multiple-objective q-FFL [15] #    
optimization-based FedMGDA+ [18] #    

FedKF (ours)     

the solution proposed in this paper. Consequently, we aim
to design a privacy-preserving FL scheme (that works in the
global model training phase) that achieves both high (i.e., over
FedAvg) model performance and high fairness for devices in
heterogeneous FL.

Observing the limitations of the previous solutions, a ques-
tion naturally arises: in heterogeneous FL, is it possible to
design a privacy-preserving FL scheme (works in the global
model training phase) that achieves a better model perfor-
mance than FedAvg while still keeping fairness as high as
possible? To answer the question, we design Federated learn-
ing with global-local Knowledge Fusion (FedKF) scheme.
FedKF does not need to trade off model performance (to below
FedAvg) for fairness while still achieving high model fairness
and a better model performance than FedAvg. Therefore,
FedKF yields a positive answer “Yes” to the above question.
The key idea in FedKF is to let the server return global
knowledge to shepherd the local training so that all local
models will be regularized towards the global optima, thereby
reducing the client model drift issue in each training round.
The global knowledge shepherded local training process is
also named the global-local knowledge fusion process in this
paper. In FedKF, two major technical challenges should be
well addressed.

The first technical challenge is how to represent global
knowledge in each training round. To address this issue, we
design T1 (active-inactive model aggregation technique) to
generate a model representing global knowledge. In each
training round, T1 aggregates not only the active clients’
model weights but also the inactive clients’ cached model
weights obtained in the previous training rounds. Thus, T1
supports a more precise global knowledge representation.

The second technical challenge is how to use global knowl-
edge to shepherd the local training in a privacy-preserving
manner. To tackle this challenge, we develop T2 (global-local
knowledge fusion technique) to enable each local model to
learn both global and local knowledge (embedded in each local
dataset). Specifically, we use knowledge distillation to transfer
the global knowledge from the T1-aggregated model (teacher
model) to each local model (student model) during the local
training process. However, knowledge distillation on a local
dataset is hard to accurately transfer global knowledge due to

the inconsistency in data distribution between the local and
global datasets. To address this issue, in T2, FedKF lets each
client train a local generator to generate imitated samples that
follow the distribution of the global dataset. Thus, FedKF can
facilitate knowledge distillation using the generated samples
to transfer the global knowledge from the T1-aggregated
model to the local model when the local model learns the
local knowledge, realizing the global-local knowledge fusion
process.

The main contributions of this paper are summarized as
follows.

• We make the first step forward to design a privacy-
preserving FL scheme that achieves both high (i.e., over
FedAvg) model performance and high fairness for devices
in heterogeneous FL.

• We propose two techniques, T1 (active-inactive model
aggregation technique) and T2 (global-local knowledge
fusion technique), used in FedKF. Both T1 and T2 can
help to improve model performance and model fairness
in heterogeneous FL.

• We theoretically prove that FedKF can directly turn out
to be a good solution to achieve high model performance
and high fairness in heterogeneous agnostic FL. Thus,
FedKF has much broader impacts in reality.

The remainder of the paper is organized as follows. Section
II reviews the related work, In Section III, we introduce
the background knowledge and formal problem statement. In
Section IV, the detailed FedKF design is presented. Analysis
of FedKF is performed in Section V. In Section VI, we
evaluate FedKF and report the experimental results. In Section
VII, some conclusions are drawn.

II. RELATED WORK

To handle data heterogeneity in FL, we can develop so-
lutions at two phases of FL: global model training phase
and local model adaption phase. In the global model training
phase, several solutions have been proposed. These previ-
ous solutions can be further classified into two categories:
model performance-based solutions and multiple-objective
optimization-based solutions. In the local model adaption
phase, personalized FL solutions were developed. These solu-
tions are analyzed as follows.
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Global Model Training Phase: Model Performance-based
Solutions. These solutions merely consider improving the
model accuracy in heterogeneous FL. These solutions include
FedGen [13], CCVR [16], FedDF [12], MOON [17], FedProx
[11], and FedGKD [14]. In FedGen, the server learns a
lightweight generator to ensemble knowledge of local models
in a data-free manner, then broadcasts it to clients to reg-
ularize the local training. CCVR adjusts the global model
using virtual representations sampled from an approximated
Gaussian mixture model. FedDF proposes a model fusion
method using ensemble distillation where the server fuses the
knowledge from local models and transfers it to the global
model by using knowledge distillation on unlabeled proxy
data. FedGen and CCVR require each client to share additional
local dataset information with the server. More specifically,
FedGen requires local label count information leaked to the
server, while CCVR requires mean and covariance of local
features for each class leaked to the server. Compared with
FedAvg, these two solutions suffer from additional information
leakage, resulting in a security level downgrade. Moreover,
compared with FedKF, FedGen needs extra communication
overhead. This is because FedGen needs to train a generator on
the server with the label count and broadcast the generator to
clients in each training round. Compared with FedGen, FedKF
employs a more accurate knowledge distillation approach.
For knowledge distillation, FedGen uses pseudo features with
labels generated by the generator directly to train the predictor
of the local model. In FedKF, global knowledge flows from
the teacher model to the local model by knowledge distillation
with pseudo samples generated by the local generator. As to
FedDF, it assumes there are additional proxy data available
on the central server for ensemble distillation. Such a strong
assumption makes them impractical since the proxy data
is unavailable in most cases. FedProx can be viewed as
a generalization and re-parametrization of FedAvg. FedProx
adds a proximal term to the local subproblem to restrict
the local update closer to the initial (global) model. MOON
utilizes the similarity between model representations to correct
the local training, i.e., conducting contrastive learning at the
model level. FedGKD fuses the knowledge from historical
global models to guide the local model training where each
client learns the global knowledge from past global models
via adaptive knowledge distillation techniques. For FedProx,
MOON, and FedGKD, their performances are good on less
heterogeneous data, but their performances decrease dramat-
ically as data heterogeneity increases. Note that none of the
solutions in this category are fairness-aware in their initial
design.
Global Model Training Phase: Multiple-objective
Optimization-based Solutions. These solutions aim to
optimize multiple objectives such as model performance,
fairness, robustness, etc. These solutions include q-
FFL [15] and FedMGDA+ [18]. Q-FFL reweights the
objective—assigning higher weights to clients with poor
performance to encourage a more uniform accuracy
distribution across clients in FL. FedMGDA+ uses multi-
objective optimization to obtain a fairer global model and
guarantee that the global model converges to Pareto stationary

solutions, refraining from sacrificing the performance of
any client. Nevertheless, the fairness gain of q-FFL and
FedMGDA+ is obtained by sacrificing model performance,
so they cannot achieve a better model performance than
FedAvg in theory. For example, when setting the reweighting
parameter q = 0 in q-FFL, it reduces to FedAvg. If q > 0,
the model performance of q-FFL is worse than FedAvg.
Local Model Adaption Phase: Personalized FL Solutions.
These solutions leverage various strategies to adapt the global
model to each local dataset. Some recent solutions include
[19]–[21]. A good survey can be found in [22]. Note that
personalized FL solutions can be used together with the
solutions in the global model training phase to further enhance
the performance.

III. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we introduce the background knowledge and
formally describe the problem statement.

A. Preliminaries

Federated Learning. FL is a distributed machine learning
setting where a group of clients jointly train a high-quality
centralized model without requiring clients to share their local
private data [23]. Suppose that there are K clients jointly to
train an ML model in FL. For the k-th client, it stores a local
dataset Dk. FL aims to learning a global model weight w over
the global dataset D = ∪{Dk}Kk=1. Accordingly, the objective
of FL is to solve the following optimization problem [2]:

min
w

f(w) =

K∑
k=1

|Dk|
|D|

Fk(w), (1)

where Fk(w) = E(x,y)∼Dk
[ℓ(w;x, y)] represents the local

objective function at the k-th client.
Knowledge Distillation. Knowledge distillation (KD) tech-
nique enables a student model to learn from one or multiple
teacher models [24], [25]. KD supports the student model com-
pression while enabling the student model to inherit knowl-
edge distilled from teacher(s). The classic KD techniques (e.g.,
[12], [24]) require a proxy dataset during the distillation. To
eliminate the requirement for the proxy dataset, data-free KD
is proposed [26]–[28]. A popular solution for data-free KD
is to use the idea of generative adversarial networks (GANs)
[27]. A generator is trained to produce imitated training data
(to replace the original training dataset) used for KD.

B. Problem Statement

We consider the local datasets unbalanced and non-IID (i.e.,
heterogeneous). Next, we define the following three metrics to
facilitate our problem description.

Definition 1: (Average Model Performance) The average
model performance (AMP) of model w (denoted as AMPw)
is defined as the average test accuracy of model w on the K
clients. Let akw(k = 1, . . . ,K) represent the test accuracy of
model w on k-th client’s local test dataset. AMPw can also
be computed as AMPw =

∑K
k=1

|Dk|
|D| a

k
w.
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Definition 2: (Fairness Metric) The fairness metric (FM)
of model w (denoted as FMw) is defined as FMw =
Var(a1w, . . . , a

K
w ), where Var denotes the variance. It is given

by Var = 1
K

∑K
k=1(a

k
w − aw)

2 and aw = 1
K

∑K
k=1 a

k
w. A

smaller FMw indicates a fairer model w.
Definition 3: (Worst-case Local Performance) The worst-

case local performance (WLP) of model w (denoted as
WLPw) is defined as WLPw = min{a1w, . . . , aKw }.
WLP as Joint Performance Metric. According to Definitions
(1)-(3), the WLP metric can be treated as measuring the joint
performance of AMP and FM. On the one hand, given the
fixed AMP, a larger WLP tends to indicate a more uniform
distribution of local performance (i.e., smaller FM) across
clients. On the other hand, given the fixed FM, a larger WLP
tends to imply a model with a higher AMP.

Definition 4: (Privacy-Preserving) We say an FL scheme
is privacy-preserving if it follows the same security principle
as FedAvg: for each client, only its model weight can be sent
to other entities (e.g., server), and no information about local
data can be shared directly.
Design Goals. In this paper, we aim to design a privacy-
preserving FL scheme FedKF that can increase AMP while re-
ducing FM. Thus, FedKF can achieve high global performance
and fairness simultaneously. If both AMP and FM are jointly
considered, FedKF should keep WLP as large as possible. To
better explain why WLP can be treated as a joint performance
metric, a numerical example is provided. Suppose that there
are three models w1, w2, and w3 trained over three clients
via FL. Their parameter configurations are shown in Table
II. For w1 and w2, it holds that AMPw1

= AMPw2
. Since

WLPw1
< WLPw2

, we have FMw1
> FMw2

. For w1 and
w3, it holds that FMw1

= FMw3
. Since WLPw1

< WLPw3
,

we have AMPw1 < AMPw3 .

TABLE II
AN NUMERICAL EXAMPLE.

Client 1 Client 2 Client 3 AMP FM WLP

w1 a1w1
=0.6 a2w1

=0.7 a3w1
=0.8 0.7 0.00667 0.6

w2 a1w2
=0.65 a2w2

=0.65 a3w2
=0.8 0.7 0.005 0.65

w3 a1w3
=0.7 a2w3

=0.8 a3w3
=0.9 0.8 0.00667 0.7

Notations. To improve the readability of this paper, we
summarize some frequently used notations in Table III.

IV. FEDKF DESIGN

In this section, we first overview FedKF and two devel-
oped key techniques. Then, we introduce the T2 (global-local
knowledge fusion technique) used in FedKF.

A. FedKF & Key Techniques Overview

FedKF. An overview of FedKF is illustrated in Fig. 1. In
FedKF, the server maintains K different cache slots for storing
the latest local models. In each training round, only the
selected active clients need to upload their local models to
the server. Thus, the k-th cache slot stores the local model
uploaded from k-th client in the most recent training round

TABLE III
NOTATIONS.

Notations Meanings

K the number of overall clients
m the number of active clients
C selection rate of active clients
T the number of global rounds
E the number of local epochs
B local batch size
α concentration parameter of the Dirichlet distribution
β the learning rate for training local generator
η the learning rate for training local model
λ1 the coefficient of one-hot loss for training generator
λ2 the coefficient of activation loss for training generator
γ the coefficient of KL loss for training local model
Dk the k-th client’s local dataset
D global dataset
AMP Average Model Performance
FM Fairness Metric
WLP Worst-case Local Performance
ACA model active clients aggregated model
OCA model overall clients aggregated model
wt the ACA model in the t-th round
ŵt the OCA model in the t-th round
wt

k the k-th client’s local model in the t-th round
θk the k-th client’s local generator

when k-th client is selected to be active. Informally, FedKF
can be described as follows.

• Step 0: In the last step of the training round t − 1,
the server aggregates all active clients’ uploaded local
models to get the active clients aggregated (ACA) model.
Meanwhile, FedKF aggregates both active and inactive
clients’ cached models in the cache slots to get the overall
clients aggregated (OCA) model. In this step, active and
inactive refer to the clients’ state in round t− 1.

• Step 1: In the training round t, a portion of clients are
selected as active clients. Let {c1, . . . , cm} denote the IDs
of the selected clients. Let C represent the selection rate.
It follows that m = C · K. Then, the server broadcasts
the ACA and OCA models to all active clients.

• Step 2: On receipt of the two models from the server, each
active client treats the ACA model as the local model wk

and treats the OCA model as the teacher model ŵ.
• Step 3: FedKF employs the data-free KD technique to dis-

till the knowledge of the teacher model to the local model.
In data-free KD, a generator is trained to generate pseudo-
samples to facilitate knowledge transfer. Meanwhile, the
local dataset of each active client is used to train the local
model. Therefore, both the global knowledge (embedded
in the teacher model) and local knowledge (embedded in
the local dataset) are fused and transferred to the local
model.

• Step 4: After global-local knowledge fusion, all active
clients upload their local models to the server. Each
client’s local model serves as the latest local model.

• Step 5: Based on the received active clients’ local models,
the server updates the weights in the corresponding cache
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All Clients Active Clients
Replace the Weights in the Cache Slots

Server

KL Loss

CE Loss

Loss
Random Noise

Student Logit

Real Sample

Ground-TruthClient

Pseudo-Sample

ACA OCA

Teacher Logit

Aggregation Aggregation

T1

Guide Global
Knowledge Learning

Guide Local
Knowledge Learning

Local Dataset

Knowledge
Fusion

T2

Generator

Fig. 1. FedKF Overview. Two key techniques (i.e., T1 and T2) are developed in FedKF. In T1, we develop an active-inactive model aggregation technique
to generate an OCA model that represents the global knowledge precisely. In T2, we develop the global-local knowledge fusion technique to enable the local
model to learn both the global knowledge (embedded in the teacher model, i.e., the OCA model) and the local knowledge (embedded in the local dataset).

slots. The inactive clients’ cache slots remain the same.
Then, the server re-computes the ACA model and the
OCA model. Next, if the model is well trained, then
terminate the training process; otherwise, go to Step 1.

When the training is finished, either the ACA model or the
OCA model serves as the final model to be used. The detailed
FedKF training algorithm is shown in Algorithm 1.

Note that FedKF does not use the server-side generator
training approach because the server-side generator training
approach achieves much worse model performance (i.e., AMP)
than our client-side generator training approach. The main
reason is that for the client-side generator training approach,
the generator is trained along with the KD process (i.e., the
generator training and KD are trained synchronously), so the
generator can generate more diversified samples used in KD.
In contrast, in the server-side approach, a stationary generator
(i.e., well-trained) is used to generate the samples used in KD,
so the generated samples are less diversified, resulting in worse
model performance.
Two Key Techniques. In FedKF, two key techniques are
developed.

• T1 (active-inactive model aggregation technique): We
develop an active-inactive model aggregation technique
to generate an OCA model that represents the global
knowledge precisely.

• T2 (global-local knowledge fusion technique): We de-
velop the global-local knowledge fusion technique to
enable the local model to learn both the global knowledge
(embedded in the teacher model) and the local knowledge
(embedded in the local dataset).

For most previous solutions (e.g., FedAvg), only active clients’
model weights are aggregated to generate the global model
in each round. In contrast, in T1, both active clients’ model
weights and inactive clients’ cached model weights are aggre-
gated to represent the global knowledge. Hence, T1 supports
a more precise global knowledge representation. Note that the
authors in [29] discuss a solution that uses the global weight

to represent the weight of inactive clients in aggregation; it
is a coarse global knowledge representation method. T1 is a
simple yet precise approach to generating the global model.
It is orthogonal to many previous solutions (e.g., FedAvg,
FedProx), so T1 can also be used in these solutions to improve
their performance. In the following sections, T2 is elaborated.

B. Data-Free Knowledge Distillation

Knowledge distillation (KD) technique enables a student
model to learn from one or multiple teacher models [24],
[25]. In FedKF, to distill knowledge from the global model
(teacher model) to a local model (student model), the data
used to train the global model is usually required. However,
in FL, data exchange is prohibited due to security concerns
(see Definition 4). Accordingly, FedKF employs the idea of
data-free KD [26]–[28] to eliminate the requirement of the
proxy data on the client side.

In data-free KD, a generator can be trained and then used for
generating the imitated training samples. The imitated training
samples can be used to transfer knowledge from the teacher
model to the student model. Note that the generated imitated
training samples do not need to be distributed very similarly
to the real training samples. The only requirement is that the
generator training samples can be used to facilitate knowledge
transfer. Hence, the requirement for the generator in data-free
KD and the generator in a traditional GAN is different.

C. Loss Functions for Training Local Generator

Inspired by [27], we design the following loss functions
used in the local generator training. To facilitate the descrip-
tion, we first describe the following parameters. Let g(θk; ·)
be the output of the k-th client’s local generator parame-
terized by θk. Let f(ŵ; ·) and h(ŵ; ·) be the feature vector
output and the probability vector output of the teacher model
parameterized by ŵ, respectively. On input a random noise
vector z ∼ N (0, I), the generator outputs pseudo-sample x̂
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with x̂ = g(θk; z). On input x̂, the teacher model can output
probability vector p̂ with p̂ = h(ŵ; x̂).

Based on the above definitions, the loss functions for
training the local generator are introduced as follows.
One-Hot Loss Function. The pseudo-sample x̂ is expected
to be classified into one particular category concerned by the
teacher model with a higher probability. Then, pseudo-label ŷ
is calculated by ŷ = argmax p̂. The one-hot loss function is
defined as

LOH = Ez∼N (0,I) [CE (h (ŵ; g (θk; z)) , ŷ)] , (2)

where CE is cross entropy. If LOH is minimized, then a
generated sample can be classified into one specific class with
a significantly high probability. This phenomenon occurs when
real samples are used for training.
Information Entropy Loss Function. In order to force
the generator to generate samples covering all classes, the
information entropy loss is used to measure the uniformity
of the class distribution. Specifically, given a probability
vector p = (p1, p2, . . . , pd), the information entropy of p
is calculated by IE(p) = −

∑d
i=1 pi log pi. The information

entropy loss can be defined as

LIE = −IE(Ez∼N (0,I) [h (ŵ; g (θk; z))]). (3)

When LIE moves to the minimum, the generator tends to gen-
erate samples for each class with roughly the same probability.
Thus, minimizing the information entropy loss can result in a
training sample set in which the number of samples for each
class is roughly the same.
Activation Loss Function. It is observed that the real training
sample’s feature vector tends to receive a higher activation
value. Thus, the activation loss function is defined as

LA = −Ez∼N (0,I)[∥f (ŵ; g (θk; z))∥1], (4)

where ∥·∥1 is the l1 norm.
Total Loss Function. By taking the above three loss functions
into consideration, the total loss function for the generator
training is given by

LG = LIE + λ1LOH + λ2LA, (5)

where λ1 and λ2 are hyper parameters for balancing the three
loss functions.

D. Performance of Trained Generator

In KD, theoretically, we can use randomly generated train-
ing samples to train the student model to mimic the behavior
of the teacher model. Note that a randomly generated training
sample can be fed to the teacher model to get its label. Then,
the properly labeled samples can be used for the student
model training. However, this approach has low efficiency and
usually cannot achieve high KD accuracy. In FedKF, for the
generator used in KD, if the generator can generate samples
that are distributed relatively close to the real-world training
samples, the KD process can be finished with high accuracy.
The generated samples do not need to be as accurate as some

other applications (e.g., the generator required by deepfake
[30]).

In what follows, we conduct some experiments to demon-
strate the performance of the trained generator used in data-
free KD. In the experiments, we train a teacher model on
centralized real-world training data. Then, we use the teacher
model to train a generator with the loss function (as defined in
Eq. 5) in a data-free manner. Meanwhile, we use the generated
samples to train a student model via KD.

The experiment settings are briefly introduced as follows.
The optimizers used in training the teacher model, student
model, and generator are SGD, SGD, and Adam, respectively.
As for training the teacher and student model, the learning
rate is set to 0.01 for LeNet-5 [31] and 0.1 for ResNet-8 [32].
For training the generator, the learning rate is set to 0.2, 0.02,
and 0.02 on the EMNIST [33], CIFAR-10, and CIFAR-100
[33] dataset, respectively. For hyper parameters λ1 and λ2

in training the generator, we set them to {0.2, 0.02} on the
EMNIST dataset, {0.01, 0.002} on the CIFAR-10 dataset, and
{0.01, 0.002} on the CIFAR-100 dataset.

Fig. 2 and 3 show the visualization results of averaged
images on the EMNIST dataset and the generated dataset (us-
ing the local generator), respectively. Although the generated
images are not very similar to the real images used in training,
but it is sufficient for achieving good performance in KD (as
demonstrated by the experimental results below).

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m)

(n) (o) (p) (q) (r) (s) (t) (u) (v) (w) (x) (y) (z)

Fig. 2. Visualization of the averaged image in each category (from a to z)
on the EMNIST dataset.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m)

(n) (o) (p) (q) (r) (s) (t) (u) (v) (w) (x) (y) (z)

Fig. 3. Visualization of the averaged image in each category (from a to z)
on the generated dataset (using the local generator).

Table IV reports the performance of the teacher and student
models on the different datasets. The teacher models achieve
93.35%, 90.78%, and 67.14% accuracies on the EMNIST,
CIFAR-10, and CIFAR-100 datasets, respectively. The student
models using T2 obtain 92.25%, 89.05%, and 63.45% accu-
racies without any real-world training data. The performance
of the student model is just slightly lower than the teacher
model.
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TABLE IV
PERFORMANCE OF THE TEACHER AND STUDENT MODELS IN T2 ON THE

DIFFERENT DATASETS.

Datasets
Teacher Student

Model Accuracy (%) Model Accuracy (%)

EMNIST LeNet-5 93.35 LeNet-5 92.25

CIFAR-10 ResNet-8 90.78 ResNet-8 89.05

CIFAR-100 ResNet-8 67.14 ResNet-8 63.45

E. Loss Functions for Training Local Model

The local model is trained by T2 (global-local knowledge
fusion technique). The loss functions are introduced as follows.
KL Loss Function. FedKF allows each client to use the
imitated training samples generated by the generator to distill
the global knowledge from the teacher model to the local
model. Meanwhile, the local model learns the local knowledge
from the local dataset.

Let h(wk; ·) be the probability vector output of the k-
th client’s local model parameterized by wk. We define the
knowledge distillation loss as

LKL = Ez∼N (0,I) [KL (h(ŵ; g(θk; z)) ∥ h(wk; g(θk; z)))] , (6)

where KL stands for Kullback–Leibler divergence [34]. When
minimizing LKL, the local model is moving closer to the
teacher model (i.e., learning the global knowledge).
Cross Entropy Loss Function. We define the loss function
over the local dataset Dk as

LCE = E(x,y)∼Dk
[CE (h(wk;x), y)] . (7)

When minimizing LCE , the local model is learning the local
knowledge (embedded in the local dataset).
Total Loss Function. The total loss function for global-local
knowledge fusion is given as

L = LCE + γLKL, (8)

where γ is a hyperparameter for balancing the two loss
functions. When minimizing L, the global-local knowledge
is fused to the local model.

F. FedKF Training Algorithm

The detailed FedKF training algorithm is shown in Al-
gorithm 1. The FedKF training algorithm requires K (the
number of all clients), C (selection rate), T (the number
of communication rounds), E (the number of local training
epochs), B (local batch size), β (the learning rate for training
local generator), η (the learning rate for training local model),
θ (the initial generator weight) and w0 (the initial ACA model
weight) as inputs and returns wT (the final ACA model) and
ŵT (the final OCA model) as outputs. In line 2, the server
initializes the OCA model ŵ0 and all the models {ŵk}Kk=1

in the cache slots with w0 and all clients initialize their local
generators {θk}Kk=1 with θ. In line 4, the server uniformly
selects m clients as active ones with m = C ·K at random. In
line 6, each active client executes ClientUpdate and uploads
the latest local model to the server. In line 7, the server replaces

Algorithm 1: FedKF Training.

Input: K, C, T , E, B, β, η, θ, w0.
Output: wT , ŵT .

1 Server executes:
2 ŵ0 ← w0, ŵk ← w0, θk ← θ (k = 1, . . . ,K).
3 for round t = 1, 2, . . . , T do
4 St ← (random set of m = C ·K active clients).
5 for each client k ∈ St in parallel do
6 wt

k ← ClientUpdate(k,wt−1, ŵt−1).
7 ŵk ← wt

k. // Update the model in the k-th
cache slot.

8 end
9 wt ← 1∑

k∈St
|Dk|

∑
k∈St

|Dk|wt
k.

10 ŵt ← 1∑K
k=1 |Dk|

∑K
k=1 |Dk|ŵk.

11 end
12

13 ClientUpdate (k,w, ŵ):
14 wk ← w.
15 B ← (split Dk into batches of size B).
16 for each local epoch i = 1, 2, . . . , E do
17 for each batch b ∈ B do
18 θk ← θk − β · ∇LG(θk). // Update generator

via minimizing LG.
19 wk ← wk − η · ∇L(wk). // Update local model

via minimizing L.
20 end
21 end
22 return wk.

models in the cache slots with the latest models uploaded
from active clients in the current round. In line 9, the server
aggregates all the latest models uploaded from active clients
in the current round and gets the updated ACA model. In line
10, the server aggregates all models in the cache slots and gets
the updated OCA model.

V. FEDKF ANALYSIS

In this section, we analyze FedKF from four aspects: why
high AMP, why high fairness, why privacy-preserving, and its
relationship with agnostic FL.

A. Why High Average Model Performance

There are two techniques contributing to the high AMP of
FedKF.
T1 Helps to Improve AMP. On the server side, most previous
solutions use the active clients aggregated (ACA) model as
the global model that is used for inference. In contrast, our
solution FedKF (OCA) uses the overall clients aggregated
(OCA) model as the global model. Since the ACA model only
aggregates a small portion of clients, it may lead to a large
AMP degradation when clients’ local datasets are non-IID. In
contrast, when T1 is used to generate the global model on the
server side, it aggregates a model that contains more precise
global knowledge learned during FL training. Thus, T1 can
significantly increase the AMP of FedKF.
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T2 Helps to improve AMP. In FedAvg, the AMP degradation
is caused by the client model drift issue when training on
heterogeneous data. To improve AMP, FedKF uses T2 to
address the client model drift issue. On the client side, when
performing the local training, each client learns the global
knowledge simultaneously. T2 can regularize the local training
by jointly considering both the global and local knowledge. It
can avoid the local model overfitting towards the local dataset.
Thus, the client model drift issue is alleviated, and the AMP
of FedKF is boosted.

B. Why High Fairness

There are two techniques contributing to the high fairness
of FedKF.
T1 Helps to Improve Fairness. On the server side, most
previous solutions use the ACA model as the global model,
while our solution FedKF (OCA) uses the OCA model as
the global model. Because the ACA model only aggregates a
small portion of clients, it may generate a model that is biased
towards only the active clients. Thus, the ACA model has poor
fairness when data is heterogeneous. On the contrary, if T1 is
used to generate the global model, both the inactive and the
active clients are taken into consideration, leading to a fairer
model.
T2 Helps to Improve Fairness. In FedAvg, the local model
is trained only on the local dataset, so the local model could
be overfitted on the local dataset. It leads to different degrees
of overfitting on different clients when their local datasets are
non-IID. Hence, the AMP variance could be very large, and
the model fairness could be low. In contrast, T2 can be used
to avoid the local model overfitting towards the local dataset
since both global knowledge (embedded in the teacher model)
and local knowledge (embedded in the local dataset) are fused
into the local model. Therefore, T2 can help FedKF to achieve
higher model fairness.

C. Why Privacy-Preserving

In each FedKF training round, there are two information
flows exchanged between the server and each client. First, the
server needs to send two models (i.e., the ACA and OCA
models) to each client. Second, each client needs to send
the updated local model to the server after the global-local
knowledge fusion. Hence, no information about the local data
is shared directly. According to Definition 4, FedKF is privacy-
preserving.

D. Relationship with Agnostic FL

The traditional FL is to optimize the model on the global
distribution. In practice, the target distribution can be very
different from the global distribution. To improve the appli-
cability of FL, agnostic federated learning (AFL) is proposed
[35]. AFL aims to optimize the model performance on any
possible target distribution formed by a mixture of client
distributions. In other words, AFL has better domain general-
ization capability. Therefore, it captures more use cases and
significantly expands the applicability of FL.

The mathematical description of AFL is presented as fol-
lows. Let Disk denote the local data distribution of k-th client.
The global distribution U is denoted as U =

∑K
k=1

nk

n Disk,
where nk represents the number of k-th client’s local sam-
ples and n =

∑K
k=1 nk. In AFL, the target distribution Û

can be modeled as an unknown mixture of the distributions
{Dis1, Dis2, . . . , DisK}. That is, Û =

∑K
k=1 p̂kDisk, where

p̂k ≥ 0 and
∑K

k=1 p̂k = 1. AFL aims to optimize the
model performance on Û for any possible choices of p̂k
(k = 1, . . . ,K).

For a model trained by AFL, it can be used for many
different agnostic target domains. Each agnostic target domain
represents a distinct use case. A good model in AFL is
expected to have high AMP and high fairness across these
multiple use cases in reality. Thus, a good AFL model should
be able to achieve both high AMP and high fairness in
heterogeneous AFL. In the following, we theoretically prove
that a model trained by FedKF can directly have both high
AMP and high fairness in heterogeneous AFL.

Lemma 1: We denote by w a trained model via us-
ing FedKF. In heterogeneous FL with FedKF, let Ω =
{Dis1, . . . , DisK} represent a set of the client distributions.
WLPΩ

w denotes the worst-case local performance of w on Ω.
Suppose that w is used for an arbitrary agnostic domain Û ,
let MP Û

w be the model performance on the agnostic domain
Û . It holds that

MP Û
w ≥WLPΩ

w . (9)

Proof 5.1: Let akw represent the test accuracy on distribution
Disk (k = 1, . . . ,K). Then, WLPΩ

w is given by

WLPΩ
w = min{a1w, . . . , aKw }. (10)

For MP Û
w , we have

MP Û
w =

K∑
k=1

p̂ka
k
w. (11)

According to Eq. (10), WLPΩ
w is the lower bound for akw (k =

1, . . . ,K). Thus, substituting WLPΩ
w for akw (k = 1, . . . ,K)

in Eq. (11), it holds that

MP Û
w ≥

K∑
k=1

p̂kWLPΩ
w = WLPΩ

w

K∑
k=1

p̂k = WLPΩ
w .

Theorem 5.1: Suppose that there are multiple (e.g., Q)
arbitrary agnostic target domains Ûi (i = 1, . . . , Q). Let
WLP Ω̂

w be the worst-case performance on these agnostic target
domains, where Ω̂ = {Û1, . . . , ÛQ}. It holds that

WLP Ω̂
w ≥WLPΩ

w , (12)

Proof 5.2: According to Lemma 1, it holds that
MP Ûi

w ≥ WLPΩ
w for any i ∈ [Q]. Since WLP Ω̂

w =

min{MP Ûi
w , . . . ,MP ÛM

w }, we have WLP Ω̂
w ≥WLPΩ

w .
According to Theorem 5.1, the WLP of a model trained by

FedKF in heterogeneous FL is the lower bound of the WLP
when the model is used for heterogeneous AFL. Given the fact
that the WLP metric tends to measure the joint performance of
AMP and FM, FedKF directly turns out to be a good solution
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(c) α = 0.01

Fig. 4. Visualization of statistical heterogeneity among clients on CIFAR-10 dataset with different α. The size of scattered points is proportional to the
number of training samples for a label available on the client.

to achieve high AMP and high fairness simultaneously in
heterogeneous AFL. Since AFL has more use cases, FedKF
can also be applied to a broader range of use cases. Thus,
FedKF has much broader impacts in reality.

VI. EXPERIMENTS

This section first introduces the experiment setup. Then, the
experimental results are reported.

A. Experiment Setup

FedKF Variants. When FedKF training is finished, either the
ACA model or the OCA model can serve as the final model
to be used. Depending on which model is used as the final
model, FedKF has two variants: FedKF (ACA) and FedKF
(OCA). Besides, during the local training in FedKF, the OCA
model serves as the teacher model, and the ACA model serves
as the local model, so in each communication round, the
amount of data in downlink communication (from server to
client) is doubled compared with FedAvg. If we use the ACA
model to serve as both the teacher model and the local model,
then the amount of data in downlink communication does not
increase in each communication round. This FedKF variant
is denoted as FedKF-. We call it the communication-efficient
variant in this paper. Note that in FedKF-, the student model
is trained based on both the KL loss and the CE loss, so
the student model (starting from the ACA model) is evolving
along with the local training process. In contrast, the teacher
model (always the ACA model) is fixed during the local
training. To sum up, we have four FedKF variants: FedKF
(ACA), FedKF (OCA), FedKF- (ACA), and FedKF- (OCA).
Solutions in Comparison. We compare four FedKF variants
with previous FL algorithms, including FedAvg [2], FedProx
[11], FedGen [13], FedGKD [14], and q-FFL [15]. For q-FFL,
we use FedAvg as its optimization method, and it is also called
q-FedAvg in [15].
Datasets. We conduct experiments on three datasets, including
EMNIST [33], CIFAR-10, and CIFAR-100 [36]. For EMNIST,
we only use a subset of the dataset by randomly sampling 10%
from each class. Each client’s local dataset is split into 80%
training set and 20% testing set randomly. Following previous
works [12]–[14], [17], we use Dirichlet distribution to model

heterogeneous data. The Dirichlet distribution DirK(α) has a
adjustable concentration parameter α. A smaller α implies a
higher data heterogeneity across different clients. For example,
the statistical heterogeneity among clients on CIFAR-10 with
different concentration parameters α is shown in Fig. 4.
Implementation & Training Details. The proposed FedKF
and solutions in comparison are all implemented in PyTorch
[37] and evaluated on a Linux server with two TITAN RTX
GPUs. Since the learning process is exactly the same, the per-
formance metrics measured are accurate in our experiments.

For the shared global model, two different neural network
models are used. ResNet-8 [32] is used for CIFAR-10/100
and LeNet-5 [31] is used for EMNIST. Note that Batch
Normalization (BN) fails on heterogeneous training data due
to the statistics of running mean and variance for the clients’
data [38]; we replace BN with Group Normalization (GN) to
produce stabler results and set the number of channels of each
group as 1. For the generator used in data-free KD, we use
a deep convolutional generator used in [39] and replace tanh
activation function in the last layer by sigmoid.

The optimizers used in training local generator and local
model are Adam and SGD, respectively. For local generator
training, the learning rate is set to 0.001. For local model
training, the learning rate is set to 0.01 and 0.1 for LeNet-5
and ResNet-8, respectively. For FL learning, we run a total of
100 communication rounds. We set the number of all clients
K to 20 and the selection rate C to 20%, which means there
are 4 clients selected as active ones in each round. The number
of local update epochs E is set to 10, and local batch size B
is set to 64. For FedKF, we set γ, λ1, and λ2 to 1, 0.1, and
0.1, respectively, for all the datasets.

To compare with FedProx, we tune FedProx’s parameter µ
from {0.00001, 0.0001, 0.001, 0.01, 0.1, 1} and report the
best result. For FedProx, the best µ for CIFAR-10, CIFAR-
100, and EMNIST are 0.001, 0.0001, and 0.001, respectively.
To compare with FedGKD, following [14], we set the default
buffer size as 5. For FedGKD, we tune FedGKD’s parameter γ
from {0.001, 0.01, 0.1, 0.2, 0.5, 1}. The best γ for CIFAR-10,
CIFAR-100, and EMNIST are 0.2, 0.2, and 0.001, respectively.
To compare with q-FFL, we tune q-FFL’s parameter q from
{0.00001, 0.0001, 0.001, 0.01, 0.1, 1}. The best q for CIFAR-
10, CIFAR-100, and EMNIST are 0.0001, 0.0001, and 0.0001,
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TABLE V
PERFORMANCE OF DIFFERENT SOLUTIONS ON EMNIST.

Solutions
α = 1 α = 0.1 α = 0.01

AMP (%) FM (×10−3) WLP (%) AMP (%) FM (×10−3) WLP (%) AMP (%) FM (×10−2) WLP (%)

FedAvg 83.78± 0.24 1.477± 0.132 76.46± 1.66 75.61± 0.92 7.972± 0.703 57.07± 1.03 55.42± 2.78 4.871± 0.976 5.61± 2.86

FedProx 83.87± 0.18 2.008± 0.167 75.24± 1.32 75.59± 0.99 7.844± 0.610 56.75± 4.09 55.70± 1.82 6.535± 1.324 3.96± 1.96

FedGen 84.81± 0.36 1.379± 0.206 78.25± 2.29 77.37± 1.62 5.405± 1.559 61.20± 6.59 56.07± 3.94 5.951± 1.194 9.08± 3.92

FedGKD 83.63± 0.28 1.463± 0.124 74.78± 1.34 75.93± 0.67 6.477± 0.504 56.02± 2.44 57.86± 1.48 4.266± 0.846 7.92± 2.32

q-FFL 84.07± 0.34 1.729± 0.182 76.58± 1.78 75.67± 0.02 6.740± 1.524 57.25± 2.30 54.90± 2.36 3.128± 0.784 18.70± 4.36

FedKF- (ACA) 85.18± 0.38 1.064 ± 0.109 78.38 ± 0.90 82.82± 0.50 2.753± 0.503 72.71± 1.09 74.44± 0.95 1.667± 0.137 39.92± 2.27

FedKF- (OCA) 85.26± 0.42 1.211± 0.217 78.35± 0.95 83.36 ± 0.62 2.358 ± 0.287 73.76 ± 0.80 76.20 ± 0.78 1.283 ± 0.157 41.91 ± 4.68
FedKF (ACA) 85.54 ± 0.37 1.717± 0.251 77.39± 1.02 82.76± 0.16 3.049± 0.848 72.41± 0.12 72.33± 1.12 2.153± 0.478 38.12± 3.42

FedKF (OCA) 85.46± 0.29 1.540± 0.192 78.26± 0.88 82.94± 0.12 2.978± 0.383 71.53± 1.57 72.73± 1.09 2.780± 0.574 36.73± 3.86

TABLE VI
PERFORMANCE OF DIFFERENT SOLUTIONS ON CIFAR-10.

Solutions
α = 1 α = 0.1 α = 0.01

AMP (%) FM (×10−3) WLP (%) AMP (%) FM (×10−2) WLP (%) AMP (%) FM (×10−2) WLP (%)

FedAvg 74.28± 0.28 1.014± 0.148 68.23± 0.43 61.89± 0.81 1.807± 0.240 34.41± 7.74 38.48± 0.43 7.914± 0.612 1.82± 1.21

FedProx 74.00± 0.16 1.079± 0.126 67.87± 0.23 62.25± 0.77 1.764± 0.365 36.09± 10.66 38.30± 0.64 7.979± 0.742 1.24± 0.63

FedGen 74.52± 0.22 0.778± 0.110 68.56± 0.06 62.92± 0.75 1.916± 0.342 34.00± 6.26 40.34± 0.51 6.673± 0.689 2.63± 2.41

FedGKD 74.83± 0.18 0.786± 0.096 69.40± 0.38 63.98± 0.38 1.508± 0.682 40.04± 5.72 39.14± 0.72 5.478± 0.574 2.40± 1.76

q-FFL 73.96± 0.31 0.716 ± 0.102 68.59± 0.19 61.49± 1.26 1.853± 0.451 33.02± 8.20 37.75± 0.58 3.655± 0.484 1.26± 0.78

FedKF - (ACA) 75.19± 0.07 0.737± 0.158 70.14 ± 0.49 67.97± 0.79 1.333± 0.075 47.72± 3.30 47.98± 0.97 5.576± 0.347 3.96± 3.67

FedKF - (OCA) 75.62 ± 0.13 1.150± 0.138 69.13± 0.59 69.88± 0.29 0.874± 0.187 53.89± 2.54 54.41± 0.54 3.063± 0.191 26.09± 4.84

FedKF (ACA) 75.23± 0.17 0.971± 0.117 69.68± 0.42 67.86± 0.39 1.271± 0.146 45.12± 2.75 47.89± 0.49 5.817± 0.536 5.68± 1.28

FedKF (OCA) 75.54± 0.09 1.197± 0.078 69.03± 0.27 70.11 ± 0.74 0.835 ± 0.110 55.18 ± 1.32 54.74 ± 0.66 2.792 ± 0.263 29.86 ± 5.51

TABLE VII
PERFORMANCE OF DIFFERENT SOLUTIONS ON CIFAR-100.

Solutions
α = 1 α = 0.1 α = 0.01

AMP (%) FM (×10−3) WLP (%) AMP (%) FM (×10−3) WLP (%) AMP (%) FM (×10−2) WLP (%)

FedAvg 36.92± 0.42 1.549± 0.274 29.53± 0.62 29.37± 0.58 6.265± 1.206 17.70± 0.64 17.41± 0.12 1.660± 0.152 3.37± 0.33

FedProx 36.63± 0.49 0.958± 0.241 30.60± 0.74 29.62± 0.51 6.131± 0.455 17.11± 1.11 17.75± 0.19 1.828± 0.134 3.41± 0.43

FedGen 40.23± 0.38 1.154± 0.222 32.21± 0.80 32.08± 0.51 5.378± 0.938 19.37± 4.49 18.06± 0.05 1.727± 0.122 1.93± 0.39

FedGKD 38.45± 0.56 1.302± 0.213 32.97± 0.58 32.23± 0.46 3.960± 1.218 22.51± 1.02 15.77± 0.18 1.626± 0.146 1.06± 0.34

q-FFL 36.12± 0.31 0.729 ± 0.178 31.26± 0.67 29.43± 0.96 5.781± 2.946 17.59± 2.74 16.82± 0.22 1.757± 0.118 1.06± 0.19

FedKF - (ACA) 39.86± 0.49 0.952± 0.113 33.79± 0.58 33.73± 0.73 4.420± 1.189 24.50± 1.21 20.30± 0.58 1.404± 0.134 3.34± 0.77

FedKF - (OCA) 41.13± 0.41 1.019± 0.329 35.51± 1.08 37.43± 0.65 1.869± 0.192 28.30± 1.21 23.45± 0.66 0.999± 0.198 8.03± 0.69

FedKF (ACA) 40.53± 0.37 0.906± 0.152 34.16± 0.72 34.11± 0.63 4.273± 0.709 22.30± 1.31 21.32± 0.78 1.900± 0.055 4.50± 0.16

FedKF (OCA) 41.30 ± 0.43 0.978± 0.137 36.43 ± 0.88 38.08 ± 0.19 1.775 ± 0.109 29.40 ± 0.70 24.06 ± 0.50 0.876 ± 0.089 8.71 ± 0.97

respectively.

B. Experimental Results

Performance Metrics. Table V-VII show the performance
metrics (i.e., AMP, FM, and WLP) of different solutions for
three degrees of data heterogeneity (α = 1, 0.1, 0.01). In the
tables, for each case, the best result is marked as bold font,
and the second best is marked using underline. We have the
following six findings.

• F1: FedKF-(OCA) performance is the best when α = 0.1
and 0.01 on EMNIST, while FedKF (OCA) performance is
the best when α = 0.1 and 0.01 on both CIFRA-10 and
CIFAR-100 datasets.

• F2: When α = 1 on three datasets, at least one of the four
FedKF variants can rank in the top 2 (in terms of AMP,
FM, and WLP) among all solutions in comparison.

• F3: FedKF has better performance than FedGen on all
three datasets. FedGen allows the leakage of local label
counts to the server, meaning that the server knows exactly
how each local dataset is heterogeneous. Thus, it violates
the privacy-preserving property (see Definition 4). FedKF
outperforms FedGen while still guaranteeing the privacy-
preserving property.

• F4: Under most cases, the OCA variants have better
performance than their corresponding ACA variants. The
superiority of the OCA variants (over the ACA variants)
is more obvious with the decrease of α (i.e., higher data
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Fig. 5. Performance v.s. number of communication rounds on different datasets with α = 0.1.

heterogeneity).
• F5: Under most cases, the original FedKF has a better

performance than its communication-efficient variants (i.e.,
FedKF-(ACA) and FedKF-(OCA)).

• F6: Under most cases, the superiority of FedKF variants
(over other solutions) is more obvious with a decreasing
of α. For example, on CIFAR-10, FedKF (OCA)’s WLP is
(69.03%-68.23%)=0.8% better than FedAvg when α = 1,
whereas it is (29.86%-1.82%)=28.04% better than FedAvg
when α = 0.01. Hence, FedKF is especially good at dealing
with highly heterogeneous data.

AMP v.s. Number of Rounds. As shown in Fig. 5, FedKF
has a faster learning speed (i.e., has higher communication
efficiency) than prior solutions when data is heterogeneous
(i.e., α = 0.1). Specifically, the number of communication
rounds to achieve the same AMP as running FedAvg for
100 rounds on different datasets with α = 0.1 is shown in
Table VIII. We can observe that the number of communication
rounds is significantly reduced by using FedKF. For example,

TABLE VIII
THE NUMBER OF ROUNDS NEEDED IN DIFFERENT SOLUTIONS TO ACHIEVE

THE SAME AMP AS RUNNING FEDAVG FOR 100 ROUNDS ON DIFFERENT
DATASETS WITH α = 0.1. THE SPEEDUP OF A SOLUTION IS COMPUTED

AGAINST FEDAVG.

Solutions
EMNIST CIFAR-10 CIFAR-100

# of rounds Speedup # of rounds Speedup # of rounds Speedup

FedAvg 100 1× 100 1× 100 1×
FedProx >100 <1× 98 1× 96 1×
FedGen 77 1.3× 91 1.1× 74 1.4×

FedGKD >100 <1× 49 2.0× 82 1.2×
q-FFL 100 1× >100 <1× 100 1×

FedKF- (ACA) 31 3.2× 35 2.9× 68 1.5×
FedKF- (OCA) 31 3.2× 30 3.3× 55 1.8×
FedKF (ACA) 31 3.2× 34 2.9× 66 1.5×
FedKF (OCA) 32 3.1× 28 3.6× 52 1.9×

FedKF (OCA) needs 32, 28, and 52 communication rounds
to achieve the same AMP as running FedAvg for 100 rounds
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on EMNIST, CIRFA-10, and CIFAR-100, respectively. Thus,
FedKF is much more communication-efficient than prior so-
lutions.
FM v.s. Number of Rounds. The FM v.s. number of commu-
nication rounds on different datasets with α = 0.1 is shown
in Fig. 5. We find that the FMs of FedKF (OCA) are always
the lowest among all solutions on all datasets when training is
finished, which means FedKF (OCA) achieves better fairness
compared with previous solutions. Besides, the FM curves
of FedKF (OCA) are smoother and have smaller fluctuation
amplitude compared with other solutions on all the datasets.
Furthermore, compared with FedKF (ACA), FedKF (OCA)
has lower FMs, smoother FM curves, and smaller fluctuation
amplitude, which means the technique T1 indeed improves
model fairness in FedKF.
WLP v.s. Number of Rounds. The WLP v.s. number of
communication rounds on different datasets with α = 0.1 is
shown in Fig. 5. When training is finished, all the WLPs of
our solution FedKF (OCA) are highest among all solutions on
all datasets. On EMNIST and CIFAR-10, the WLPs of both
FedKF (ACA) and FedKF (OCA) are higher than previous
solutions, while FedKF (OCA) has more smooth WLP curves
compared with FedKF (ACA).
Communication Data Amount. For both FedKF (ACA) and
FedKF (OCA), in each communication round, their uplink
communication (from client to server) data amount is the
same as FedAvg, while their downlink communication data
amount is doubled compared with FedAvg. For both FedKF-
(ACA) and FedKF- (OCA), their communication data amount
is the same as FedAvg. Therefore, compared with FedKF,
FedKF- slightly sacrifices performance to ensure there is no
communication traffic increase in each communication round.
Besides, as shown in Table VIII, FedKF and FedKF- require
much fewer communication rounds in learning compared with
FedAvg. Hence, in most cases, FedKF and FedKF- require
less communication data amount than prior solutions. Note
that FedKF- has the least communication consumption since
it requires half of the downlink communication data amount
in each communication round compared with FedKF.
Client’s Computation Overhead. We have a theoretical anal-
ysis of the client’s computation overhead as follows. In the lo-
cal training phase of federated learning, the main computation
is forward propagation (FP) and backpropagation (BP) through
the models. To compare the computation overhead of different
solutions in the local training phase, we compare the numbers
of the FP and BP operations through the models for each batch
of the local data. Table IX demonstrates the numbers of the FP
and BP operations through the models for each batch of the
local data in the local training phase in different solutions. In
FedGen, only the last layers of the local model (i.e., predictor)
need 2 operations of both FP and BP for each batch of the
local data, and the number of the FP and BP operations in
the remaining layers is the same as FedAvg. Therefore, we
consider the numbers of the FP and BP operations through the
classifier in FedGen as 1.5 and 1.5, respectively. In FedGKD,
the teacher model (the classifier) needs to output the logit
of each sample for knowledge distillation, so the number of
the FP operations through the classifier is 2. In FedKF, the

numbers of the FP and BP operations through the teacher
model (the classifier) are 1 and 1, respectively, and those
through the student model (the classifier) are 2 and 2.

TABLE IX
THE NUMBERS OF THE FP AND BP OPERATIONS THROUGH THE MODELS

FOR EACH BATCH OF THE LOCAL DATA IN THE LOCAL TRAINING PHASE IN
DIFFERENT SOLUTIONS.

Solutions
Classifier Generator

Forward Backward Forward Backward

FedAvg 1 1 0 0

FedProx 1 1 0 0

FedGen 1.5 1.5 1 0

FedGKD 2 1 0 0

q-FFL 1 1 0 0

FedKF- 3 3 1 1

FedKF 3 3 1 1

Time Consumption. To intuitively compare the time complex-
ity of different solutions, we conduct experiments to report the
time consumption of different solutions for 100 communica-
tion rounds on different datasets with α = 0.1. Note that the
active clients in the experiments serially execute ClientUpdate
one by one, which means the time consumption in real-world
applications is much less than that in the experiments due to
its parallel execution of ClientUpdate. As shown in Table X,
while FedKF- and FedKF require every client independently
to train an extra local generator and conduct local knowledge
distillation, the time consumption of our solutions is about
1.8×-1.9× longer than FedAvg on all three different datasets,
which is acceptable. Our solutions take more time to achieve
better capabilities to handle data heterogeneity in FL.

TABLE X
TIME CONSUMPTION OF DIFFERENT SOLUTIONS FOR 100

COMMUNICATION ROUNDS ON DIFFERENT DATASETS WITH α = 0.1. THE
SPEED-DOWN COMPUTES ITS TIME CONSUMPTION RATIO COMPARED TO

FEDAVG.

Solutions
EMNIST CIFAR-10 CIFAR-100

Time Speed-down Time Speed-down Time Speed-down

FedAvg 6min 43s 1× 45min 12s 1× 45min 27s 1×
FedProx 7min 20s 1.1× 47min 39s 1.1× 49min 12s 1.1×
FedGen 8min 11s 1.2× 50min 23s 1.1× 50min 31s 1.1×

FedGKD 7min 5s 1.1× 47min 43s 1.1× 48min 11s 1.1×
q-FFL 7min 4s 1.1× 47min 53s 1.1× 48min 3s 1.1×

FedKF- 12min 3s 1.8× 84min 36s 1.9× 84min 40s 1.9×
FedKF 12min 4s 1.8× 84min 38s 1.9× 84min 42s 1.9×

Table XI reports the time consumption in different so-
lutions to achieve the same AMP as running FedAvg for
100 rounds on different datasets with α = 0.1. In FL, the
total time consumption is obtained by (the training time per
round)×(number of rounds needed to converge). As shown in
Table XI, to achieve the same level of model performance,
our solutions are generally faster than others on the EMINST
and CIFAR-10 datasets and slower on the CIFAR-100 dataset.
Thus, the computation overhead of FedKF and its variants are
comparable to other solutions.
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TABLE XI
TIME CONSUMPTION NEEDED IN DIFFERENT SOLUTIONS TO ACHIEVE THE

SAME AMP AS RUNNING FEDAVG FOR 100 ROUNDS ON DIFFERENT
DATASETS WITH α = 0.1. THE SPEEDUP OF A SOLUTION IS COMPUTED

AGAINST FEDAVG.

Solutions
EMNIST CIFAR-10 CIFAR-100

Time Speedup Time Speedup Time Speedup

FedAvg 6min 43s 1× 45min 12s 1× 45min 27s 1×
FedProx >6min 43s <1× >45min 12s <1× >45min 27s <1×
FedGen 6min 18s 1.1× >45min 12s <1× 37min 23s 1.2×
FedGKD >6min 43s <1× 23min 23s 1.9× 39min 31s 1.2×

q-FFL >6min 43s <1× >45min 12s <1× >45min 27s <1×
FedKF- (ACA) 3min 44s 1.8× 29min 37s 1.5× >45min 27s <1×
FedKF- (OCA) 3min 44s 1.8× 25min 23s 1.8× >45min 27s <1×
FedKF (ACA) 3min 44s 1.8× 28min 47s 1.6× >45min 27s <1×
FedKF (OCA) 3min 52s 1.7× 23min 42s 1.9× 44min 3s 1×

Robustness. It can be found from Fig. 5 that FedKF is more
robust than other solutions (in terms of performance stability)
during FL training. The fluctuation amplitude of AMP in
FedKF (OCA) is extremely small compared with FedAvg,
FedGen, FedGKD, and q-FFL when data is heterogeneous.

TABLE XII
PERFORMANCE COMPARISON BETWEEN FEDAVG AND FEDAVG (OCA) ON

DIFFERENT DATASETS WITH α = 0.1.

Datasets Metrics FedAvg FedAvg (OCA)

EMNIST
AMP (%) 75.61± 0.92 78.38± 0.64 ↑
FM (×10−3) 7.972± 0.703 5.329± 1.378 ↓
WLP (%) 57.07± 1.03 60.88± 1.87 ↑

CIFAR-10
AMP (%) 61.89± 0.81 65.82± 0.22 ↑
FM (×10−2) 1.807± 0.240 1.194± 0.142 ↓
WLP (%) 34.41± 7.74 44.21± 4.58 ↑

CIFAR-100
AMP (%) 29.37± 0.58 34.76± 0.22 ↑
FM (×10−3) 6.265± 1.206 1.853± 0.304 ↓
WLP (%) 17.70± 0.64 25.78± 0.92 ↑

Using T1 to Improve FedAvg. As mentioned before, we
can use T1 to improve prior solutions. Let FedAvg (OCA)
represent the solution using T1. It simply uses the OCA model
as the final model to be used. Note that, during FedAvg (OCA)
training, the global model broadcasted to active clients is still
the ACA model. Table XII and Fig. 6 show the performance
comparison between FedAvg and FedAvg (OCA) on different
datasets with α = 0.1. In Table XII, it can be found that
all metrics of FedAvg (OCA) are better than FedAvg. Fig. 6
demonstrates that FedAvg (OCA) has a faster learning speed
and smaller fluctuation amplitude than FedAvg.

To further explore under what circumstances T1 can im-
prove FedAvg, we study the impacts of α (the concentration
parameter of the Dirichlet distribution) and K (the number
of overall clients) on the performance of the global models
(i.e., the ACA model and the OCA model). Fig. 7 shows the
AMP of FedAvg v.s. α w/ and w/o T1 on different datasets
with different K, where “O” stands for the OCA model, “A”
stands for the ACA model, and C represents the selection
rate of active clients. Note that C = 1 represents full device
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Fig. 6. AMP of FedAvg w/ and w/o T1 on different datasets with α = 0.1.

participation that is unrealistic in most scenarios due to the
presence of stragglers and the increase in communication cost
per communication round (e.g., the communication cost per
communication round of C = 1 is 5 times as large as that
of C = 0.2). In Fig. 7, it can be found that the AMP of
C = 1 is always the highest, which is consistent with the
theoretical proof in [29]. When the number of overall clients
K is limited, the more heterogeneous the data, the larger the
gap in the AMP of the ACA model between C = 0.2 and
C = 1. In this case, compared to the ACA model, the OCA
model (that additionally aggregates the latest historical local
models of inactive clients) can obtain higher AMP and narrow
the gap.

Fig. 8 shows the AMP of FedAvg v.s. selection rate w/ and
w/o T1 on different datasets with α = 0.1, where the ACA
model is the aggregation of only active clients, and the OCA
model is the aggregation of both active and inactive clients by
using T1. Note that when the selection rate is 5%, only one
client is selected as active in each round. In Fig. 8, it is easy
to find that the performance (i.e., AMP) of the OCA model is
always higher than that of the ACA model when the selection
rate is less than 1. Besides, the ACA model’s performance
degrades fast with the descent of the selection rate, i.e., by
about 13% on the EMNIST dataset, about 20% on the CIFAR-
10 dataset, and about 14% on the CIFAR-100 dataset, which
means the ACA model’s performance is vulnerable to the
low selection rate on non-IID data. Fortunately, with T1,
the OCA model’s performance degrades slightly from 80%
to 5% of the selection rate, especially on the CIFAR-100
dataset. Therefore, the improvement using T1 (in terms of
global model performance) is more obvious with a decreasing
selection rate.

VII. CONCLUSION

In this paper, we have developed FedKF to handle data
heterogeneity in FL. Two novel techniques are developed
to achieve the precise global knowledge representation and
global-local knowledge fusion, by which the local model drift
issue can be alleviated. We theoretically prove that FedKF
can directly turn out to be a good solution in heterogeneous
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agnostic FL, so FedKF has much broader application sce-
narios. According to theoretical analysis and experimental
results, FedKF achieves the three design goals (i.e., high model
performance, high model fairness, and privacy-preserving)
simultaneously. In summary, the proposed techniques can
mitigate data heterogeneity issues and significantly boost FL
performance. There are two directions to launch future work.
First, we plan to test FedKF on more datasets and make the
testbeds more diverse. Second, we plan to improve FedKF fur-
ther and make it more lightweight in terms of communication
and computation overhead.
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D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[24] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.



15

[25] T. Fukuda, M. Suzuki, G. Kurata, S. Thomas, J. Cui, and B. Ramabhad-
ran, “Efficient knowledge distillation from an ensemble of teachers.” in
Interspeech, 2017, pp. 3697–3701.

[26] R. G. Lopes, S. Fenu, and T. Starner, “Data-free knowledge distillation
for deep neural networks,” arXiv preprint arXiv:1710.07535, 2017.

[27] H. Chen, Y. Wang, C. Xu, Z. Yang, C. Liu, B. Shi, C. Xu, C. Xu, and
Q. Tian, “Data-free learning of student networks,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision (CVPR), 2019,
pp. 3514–3522.

[28] G. Fang, J. Song, C. Shen, X. Wang, D. Chen, and M. Song, “Data-free
adversarial distillation,” arXiv preprint arXiv:1912.11006, 2019.

[29] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” in International Conference on Learning
Representations (ICLR), 2019.

[30] M. Westerlund, “The emergence of deepfake technology: A review,”
Technology Innovation Management Review, vol. 9, no. 11, 2019.

[31] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural Computation, pp. 541–551, 1989.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[33] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik, “Emnist: Extending
mnist to handwritten letters,” in International Joint Conference on
Neural Networks (IJCNN), 2017, pp. 2921–2926.

[34] S. Kullback and R. A. Leibler, “On information and sufficiency,” The
Annals of Mathematical Statistics, pp. 79–86, 1951.

[35] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic federated learning,”
in International Conference on Machine Learning (ICML), 2019, pp.
4615–4625.

[36] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Technical Report, University of Toronto, 2009.

[37] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, and e. a. Antiga, Luca, “Pytorch: An
imperative style, high-performance deep learning library,” in Advances
in Neural Information Processing Systems (NIPS), 2019, pp. 8026–8037.

[38] K. Hsieh, A. Phanishayee, O. Mutlu, and P. Gibbons, “The non-iid
data quagmire of decentralized machine learning,” in International
Conference on Machine Learning (ICML). PMLR, 2020, pp. 4387–
4398.

[39] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.


	Introduction
	Related Work
	Preliminaries and Problem Statement
	Preliminaries
	Problem Statement

	FedKF Design
	FedKF & Key Techniques Overview
	Data-Free Knowledge Distillation
	Loss Functions for Training Local Generator
	Performance of Trained Generator
	Loss Functions for Training Local Model
	FedKF Training Algorithm

	FedKF Analysis
	Why High Average Model Performance
	Why High Fairness
	Why Privacy-Preserving
	Relationship with Agnostic FL

	Experiments
	Experiment Setup
	Experimental Results

	Conclusion
	References

